PRZEWODNIK STARTOWY
SPIS TREŚCI

WPROWADZENIE ... 5
 Witamy w programie Advance Design ... 5
 O przewodniku .. 6
 Gdzie szukać informacji? .. 6
 Pomoc techniczna ... 6

DO CZEGO SŁUŻY ADVANCE DESIGN? .. 7

INSTALACJA ADVANCE .. 8
 Konfiguracja komputera ... 8
 Wymagania sprzętowe .. 8
 Wymagania systemowe ... 8
 Instalacja Advance Design .. 8

URUCHAMIANIE ADVANCE DESIGN ... 9
 Zarządzanie projektem ... 10

ŚRODOWISKO ADVANCE DESIGN ... 10

MODELOWANIE: TWORZENIE MODELU KONSTRUKCJI 13
 Elementy Advance Design .. 13
 Tworzenie elementów ... 14
 Definiowanie właściwości elementu ... 15
 Systemy elementów ... 16
 Operacje CAD .. 17
 Generowanie obciążeń ... 18
 Definiowanie analiz ... 20
 Weryfikacja modelu ... 21

ANALIZA: SIATKOWANIE I OBLICZENIA .. 22
 Tworzenie modelu analitycznego ... 22
 Siatka ... 23
Obliczenia .. 24
 Obliczenia metody elementów skończonych ... 24
 Wymiarowanie elementów żelbetowych ... 25
 Wymiarowanie elementów stalowych .. 25

ANALIZA WYNIKÓW (POST-PROCESSING) ... 27
 Graficzna prezentacja wyników ... 27
 Wykresy wyników... 30
 Wykresy naprężeń ... 31
 Animacja post-processingu... 32
 Analiza wyników wymiarowania ... 33
 Wyniki dla żelbetu.. 33
 Wyniki dla stali... 35
 Widoki post-processingu .. 36
 Raporty... 37
Wprowadzenie

Witamy w programie Advance Design

Począwszy od modelowania przez obliczenia, post-processing wyników i optymalizację konstrukcji, Advance Design oferuje kompletne środowisko dla analizy statycznej i dynamicznej w 2D oraz 3D korzystając przy tym z metody elementów skończonych.

Program posiada również wszelkie niezbędne narzędzia do wymiarowania konstrukcji stalowych oraz żelbetowych. Sprawdzenie elementów stalowych rozpoczyna się od sprawdzenia początkowo przyjętych parametrów i może być kontynuowane przez sukcesywną optymalizację. Wymiarowanie konstrukcji żelbetowych może zostać przeprowadzone na kilka różnych sposobów: na bazie powierzchni zbrojenia teoretycznego oraz w oparciu o stopień zbrojenia.

Advance Design jest programem obliczeniowym najnowszej generacji, wyposażonym w wiele innowacyjnych funkcji:

- Kompletna integracja modułów metody elementów skończonych, wymiarowania konstrukcji żelbetowych, wymiarowania konstrukcji stalowych;
- Nowa technologia oprogramowania:
 - Możliwość zapisu odkształceń konstrukcji w formie sekwencji wideo;
 - Silnik obliczeniowy, który samoistnie dopasowuje się do złożonych geometrii;
 - Technologia zapamiętywania wyników, która umożliwia automatyczną aktualizację wyników post-processingu w czasie rzeczywistym dla każdego z kroków obliczeń;
 - Generowanie zaawansowanych raportów obliczeń zawierających skrypty pozwalające na zapis i aktualizację dowolnych danych projektowych.
O przewodniku

Niniejszy przewodnik zawiera opis podstawowych funkcji oraz środowiska pracy Advance Design. W przewodniku zawarte zostały krótkie oraz proste przykłady pracy z programem. Przykłady przedstawione w przewodniku zawierają opis wybranych funkcji Advance Design.

Przewodnik startowy jest formą krótkiego wprowadzenia do pracy w Advance Design – przewodnik zawiera opis tylko wybranych funkcji Advance Design. Aby uzyskać więcej informacji na temat pracy w Advance Design lub poszczególnych funkcji zalecamy odwołanie się do Pomocy online.

Przykłady opracowane i przedstawione w przewodniku służy wyłącznie celom szkoleniowym i zostały przygotowane w oparciu o wybrane normy.

Gdzie szukać informacji?

Advance Design zawiera system pomocy online, w którym można odnaleźć szczegółowy opis każdej funkcji.

Pomoc online dla Advance Design można uruchomić w programie za pomocą następujących poleceń:

- Z menu: wybierz Pomoc > Pomoc Online
- Z klawiatury: naciśnij <F1>

Pomoc techniczna

Pomoc techniczna GRAITEC jest dostępna przez telefon, faks, lub email. Aby skontaktować się z pomocą techniczną programu:

- Wyślij email do GRAITEC: na pasku narzędzi Standard kliknij na
- Z menu wybierz: Pomoc > Pomoc techniczna. Aktualnie otwarty projekt modelu zostanie zarchiwizowany i załączony do wiadomości. Email zostanie wysłany do zespołu pomocy technicznej, która rozwiąże problem oraz poda niezbędne informacje.
DO CZEGO SŁUŻY ADVANCE DESIGN?

Advance Design jest programem przeznaczonym do analizy konstrukcji dla branży inżynierii lądowej, który oferuje w pełni zintegrowane środowisko do modelowania, post-processingu wyników oraz optymalizacji konstrukcji. Program posiada zaawansowane funkcje CAD niezbędne dla płynnego modelowania, siatkowania, obliczeń, weryfikacji oraz optymalizacji konstrukcji stalowych i żelbetowych. Advance Design umożliwia szybki post-processing oraz tworzenie raportów wysokiej jakości.

Projektowanie w Advance Design można podzielić na 3 etapy: Model, Analiza i Dokument.
INSTALACJA ADVANCE

Konfiguracja komputera

Wymagania sprzętowe

- Procesor Pentium IV lub szybszy
- 2 GB pamięci RAM (zalecane 4 GB)
- Min. 2 GB wolnego miejsca na dysku twardym dla instalacji
- Napęd DVD
- Karta graficzna kompatybilna z Windows (128 MB RAM lub więcej), zainstalowany sterownik karty z obsługą środowiska OpenGL (zalecany przez producenta karty)
- Drukarka lub ploter kompatybilne z Windows
- Mysz

Wymagania systemowe

- System operacyjny: Windows XP Pro lub Windows Vista lub Windows 7 (Pro, Business, Ultimate)
- Rozdzielczość ekranu: min. 1024 x 768
- Obsługiwana paleta kolorów: min. 24-bit

Instalacja Advance Design

Zanim zainstalujesz Advance:

- Przed instalacją pod Windows XP lub Vista upewnij się że posiadasz prawa administratora w systemie.
- Zamknij wszystkie aktywne aplikacje.

Postępuj zgodnie z kolejnymi krokami instalacji:

1. Włóź płytę DVD Advance do napędu DVD.

Program instalacyjny jest uruchamiany automatycznie po włożeniu płyty DVD do napędu.

Jeżeli funkcja Autostarta została wyłączona na komputerze i instalator nie zostanie uruchomiony automatycznie, użyj polecenia **Uruchom** aby rozpocząć instalację:

 - Z menu Windows, wybierz: **Start > Uruchom**.
 - Naciśnij **Przeglądaj** a następnie wybierz plik **SetupAdvance.exe** znajdujący się na płycie DVD z programem. Naciśnij **<OK>**.
2. Wybierz język instalacji i kliknij **Instaluj produkty**.
3. Na następnym ekranie, wybierz Advance Design i kliknij **Dalej**.

Ponieważ GRAITEC Advance Connection Design do działania wymaga Advance Steel, wybierz do zainstalowania również Advance Steel. Jeżeli podczas instalacji nie zaznaczyz GRAITEC Advance Steel, zostanie on zainstalowany podczas pierwszego użycia polecen związanych z projektowaniem połączeń.

4. Przeczytaj uważnie umowę licencyjną. Wybierz **Akceptuję** aby zatwierdzić warunki licencji a następnie kliknij **Dalej** aby kontynuować instalację.

5. Na następnym ekranie, wybierz język interfejsu oraz ścieżkę dla instalacji.
 - Aby wybrać język interfejsu, kliknij **Dostosuj**. W następnym oknie, wybierz język dla interfejsu oraz ustawienia lokalne dla każdej z instalowanych aplikacji - aby zatwierdzić wybór kliknij <**OK**>.
 - Aby zmienić folder instalacji, kliknij na **....**. W następnym oknie, wprowadź ścieżkę lub wybierz inny folder, w którym chcesz zainstalować Advance – aby zatwierdzić wybór kliknij <**OK**>.

6. Kliknij **Instaluj** aby rozpocząć instalację.
7. Czekaj, aż Advance Design zostanie zainstalowany na Twoim komputerze. Po zakończeniu procesu instalacji kliknij **Zakończ**.

Aby korzystać z programu, po zainstalowaniu Advance należy aktywować licencję. Licencja jest aktywowana za pomocą kodu aktywacji oraz numeru seryjnego. Jeżeli licencja zostanie aktywowana, program będzie mógł być uruchomiony w wersji zgodnej z zamówieniem.

Bez kodu aktywacji, zainstalowana zostanie licencja czasowa na okres 5 dni.

Proces aktywacji rozpocznie się podczas uruchamiania Advance Design. Wykonaj aktywację zgodnie z procedurą opisaną w **Przewodniku instalacji**.

URUCHAMIANIE ADVANCE DESIGN

Advance Design może zostać uruchomiony na kilka różnych sposobów:
- Z menu **Start** wybierz **Programy > Graitec > Advance Design**.
- Kliknij dwukrotnie na ikonę Advance Design na pulpicie.

Aby uruchomić jednocześnie kolejną sesję programu:
- Kliknij dwukrotnie na pliku projektu z rozszerzeniem .fto.
- Kliknij dwukrotnie na ikonę Advance Design na pulpicie.
Zarządzanie projektem

Podczas uruchamiania Advance Design pojawia się okno startowe, w którym można skonfigurować nowy projekt lub otworzyć projekty już istniejące.

Przykład: Konfiguracja nowego projektu

1. W zakładce **Nowy** okna startowego, kliknij **Konfiguracja**.
2. W oknie “Ustawienia lokalne” wybierz następujące ustawienia:
 - Wybierz język w jakim będzie prezentowany interfejs oraz raporty obliczeń;
 - Wybierz normę sejsmiczną: **EC8**;
 - Wybierz normę klimatyczną: **EC1**;
 - Wybierz normę dla konstrukcji żelbetowych: **EC2**;
 - Wybierz normę dla konstrukcji stalowych: **EC3**.

ŚRODOWISKO ADVANCE DESIGN

Advance Design oferuje kompletne środowisko modelowania, analizy oraz post-processingu wyników – całość w pełni zintegrowana w jednym interfejsie.

1. Menu

Polecenia programu są dostępne w rozwijalnych listach na pasku menu. Menu programu zostało uporządkowane od lewej do prawej zgodnie z kolejnymi etapami projektu.
2. Paski narzędzi
Różne rodzaje polecen, które można włączyć i umieścić w dowolnym miejscu (swobodne lub zablokowane) za pomocą funkcji drag-and-drop zostały pogrupowane w paski narzędzi. Paski narzędzi, które są aktywne na różnych etapach pracy z projektem (takich jak Modelowanie, Analiza - hipotezy, Analiza – wyniki MES, itp.) są automatycznie wyświetlane lub ukrywane w celu optymalizacji przestrzeni roboczej.

3. Pilot
Tryb pracy można zmienić klikając na ikonkę danego trybu w górnej części pilota: 📃🗂️.
Każe z pozycji znajdujących się w pilocie posiada menu kontekstowe, w którym użytkownik znajdzie polecenia związane z danym elementem i bieżącym trybem pracy. Zawartość pilota zmienia się wraz ze zmianą trybu pracy:
- **Tryb Model**: w tym miejscu znajdują się elementy strukturalne, które można grupować w systemy oraz podsystemy, obciążenia (pogrupowane w rodziny przypadków oraz przypadki obciążeń), hipotezy obliczeniowe (kombinacje obciążeń, rodzaje analiz) oraz zapisane widoki modelu.
- **Tryb Analiza**: zawiera odwołania do zdefiniowanych rodzajów oraz przypadków analiz, zapisanych analiz oraz widoków post-procesinigu.
- **Tryb Dokument**: zawiera odwołania do dokumentów utworzonych w danym projekcie: raporty, zapisane widoki oraz pliki AVI.

4. Okno właściwości
Atrybuty wszystkich elementów modelu można przeglądać i modyfikować w oknie właściwości. Właściwości są wyświetlane w grupach według ich kategorii. Okno właściwości jest wyświetlane dynamicznie (gdy zaznaczony zostanie element lub wybrane poleceń) i zawiera parametry dotyczące wybranego elementu.

5. Pasek statusu
Na pasku statusu wyświetlane są informacje dotyczące wykonywanych przez program polecen. Na pasku statusu znajdują się również przyciski pozwalające skonfigurować następuje parametry: tryby lokalizacji, zawartość podpowiedzi wyświetlanym przy obiektach, informację o bieżącym układzie współrzędnych oraz jednostki.
6. Linia komend
Linia komend zawiera informacje o statusie wykonywanych poleceń, wspomaga proces rysowania oraz zawiera informacje o błędach. Zawiera trzy różne zakładki:

– **Informacja**: wyświetla status bieżących operacji.
– **Edycja**: pozwala na interakcję pomiędzy użytkownikiem a programem: dostarcza opcje do rysowania / zmiany obiektów przez wprowadzenie ich parametrów w obszarze linii komend.
– **Błędy**: wyświetla ostrzeżenia oraz informacje o błędach.

7. Obszar graficzny
Obszar roboczy stanowi przestrzeń projektową programu, w której można posługiwać się funkcjami CAD oraz wyświetlać realistyczny rendering modelu. Dla każdego elementu graficznego można wywołać menu kontekstowe zawierające szybki dostęp do wybranych poleceń dostępnych dla danego elementu (np. zaznaczenie, generowanie elementów, wyświetlanie / ukrywanie elementów itp.).

Obszar roboczy można podzielić na kilka różnych rzutni (od jednej do czterech), każda z rzutni może zawierać różne ustawienia wyświetlania oraz rodzaj widoku (np. zbliżenie na szczegóły konstrukcji, rendering realistyczny lubuproszczony itp.).

Domyślna płaszczyzna robocza w obszarze roboczym służy do modelowania konstrukcji. Wszystkie parametry płaszczyzny można łatwo modyfikować a samą płaszczyznę można w dowolnym momencie wygasić.

8. Układ współrzędnych
Globalny układ współrzędnych jest prezentowany przez symbol trzech osi stałych wyświetlanych w obszarze roboczym. Istnieje również możliwość utworzenia dowolnego układu współrzędnych użytkownika (w układzie kartezjańskim lub biegunowym).

Interfejs programu jest intuicyjny i został dopasowany tak aby można było go łatwo dostosować do własnych wymagań (dokowanie elementów interfejsu, automatyczne ukrywanie poszczególnych komponentów, grupowanie komponentów w zakładkach itp.).
MODELOWANIE: TWORZENIE MODELU KONSTRUKCJI

Modelowanie konstrukcji odbywa się za pomocą dostępnych w programie funkcji CAD, które można stosować bezpośrednio w obszarze roboczym zarówno w widoku 2D jak i 3D. Program posiada również funkcje ułatwiające bieżącą pracę np. zoom, widoki modelu, orbita 3D.

Elementy Advance Design

Advance Design posiada kompletne biblioteki elementów konstrukcyjnych, podpór oraz elementów geometrycznych.

<table>
<thead>
<tr>
<th>Przykład</th>
<th>Rodzaj elementu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elementy liniowe (pręt, belka, belka ciągła, belka zmienna, cięgno, pręt ściskany, kabel)</td>
</tr>
<tr>
<td></td>
<td>Elementy powierzchniowe (membrana, tarcza, powłoka, płaski stan odkształcenia)</td>
</tr>
<tr>
<td></td>
<td>Podpory (podpory punktowe, liniowe oraz powierzchniowe: sztywne, sprzężyste lub typu rozciąganie / ściskanie)</td>
</tr>
<tr>
<td></td>
<td>Ściany wiatrowe: elementy przenoszące obciążenia na podpierające elementy</td>
</tr>
<tr>
<td></td>
<td>Punkty</td>
</tr>
<tr>
<td></td>
<td>Linie i polilinie</td>
</tr>
<tr>
<td></td>
<td>Siatki</td>
</tr>
<tr>
<td></td>
<td>Linie wymiarowe</td>
</tr>
</tbody>
</table>
Tworzenie elementów

Elementy mogą być rysowane w obszarze roboczym przez wprowadzenie ich parametrów z klawiatury (poprzez wprowadzenie współrzędnych w linii komend) lub w sposób graficzny za pomocą myszki korzystając przy tym z punktów odniesienia znajdujących się na płaszczyźnie roboczej lub punktów lokalizacji znajdujących się na istniejących elementach. Advance Design posiada również narzędzia pozwalające w znacznym stopniu automatyzować proces modelowania np. generator ram portalowych i kratownik, generator sklepień, generator obiektów na wybranych elementach.

Przykład: Tworzenie elementów konstrukcji

1. Na pasku narzędzi Modelowanie: naciśnij

2. W obszarze modelu (płaszczyzna XZ): aby zdefiniować słup podaj współrzędne 0 0 dla początku a następnie 0 7 dla końca tworzonego słupa.

3. Podczas, gdy okno rysunku jest aktywne, podaj w wierszu poleceń współrzędne dla drugiego słupa: 12 0 dla początku oraz 12 7 dla końca. Pamiętaj aby współrzędne były oddzielone spacją. Naciśnij Enter po zdefiniowaniu każdego z punktów.

4. Narysuj górną belkę pomiędzy dwoma słupami. Użyj trybu lokalizacji “Koniec”:
5. Narysuj słup o wysokości 3 metrów i współrzędnych XZ 6 0.

6. Tworzenie belek kondygnacji: podczas, gdy narzędzie rysowania elementu liniowego jest aktywne, naciśnij <Alt + S> aby uzyskać dostęp do trybów lokalizacji; wybierz “Prostopadły” i wstaw belkę jak na poniższym rysunku.

7. Na pasku narzędzi Modelowanie kliknij ; w obszarze modelu kliknij na podstawy słupów, aby wstawić podpory.

Definiowanie właściwości elementu

Atrybuty każdego elementu można zdefiniować w oknie właściwości (np. nazwa oraz numer ID). Standardowo, okno właściwości pojawia się gdy element jest wybieraný.

Przykład: Definiowanie właściwości elementu

1. Wybierz dwa słupy oraz belkę górnej ramy portalowej klikając na elementy.

2. W oknie właściwości wybierz następujące ustawienia:
 - Materiał: C20/25;
 - Przekrój: R40*60.
3. Wybierz niższy słup i w oknie właściwości wybierz materiał S235. Aby zdefiniować przekrój poprzeczny elementu kliknij na aby otworzyć bibliotekę i wybrać przekrój HEA300 z katalogu “European Profiles”.

Postępuj w ten sam sposób aby zdefiniować materiał oraz przekrój poprzeczny dla belki dochodzącej do słupa: S235 - HEA180.

Systemy elementów

Wszystkie tworzone elementy konstrukcyjne (oraz elementy geometryczne i pomocnicze) znajdują się w pilocie w trybie Model. Menu kontekstowe w pilocie dla każdego elementu daje natychmiastowy dostęp do funkcji modelowania oraz zarządzania elementami (np. ukrywanie/wyświetlanie, wybieranie, grupowanie w systemy itp.).

Przykład: Tworzenie systemów

1. W Pilocie kliknij prawym klawiszem na pozycję Konstrukcja a następnie wybierz Ustawienia systemu / Utwórz podsystem.
2. Wprowadź nazwę systemu: Rama portalowa.
3. Wybierz system Rama portalowa a następnie utwórz następujące podsystemy: Słupy, Belki, Podpory oraz Ściany wiatrowe.
5. W pilocie, wybierz dwa słupy ramy portalowej i przeciągnij je do podsystemu Słupy w systemie Rama portalowa.

Używając tej samej metody umieść wszystkie elementy w odpowiednich systemach.

Operacje CAD

Dzięki użyciu zaawansowanych poleceń CAD możemy budować model z dużą dokładnością. Dostępne są następujące narzędzia dla operacji na elementach: kopiuj (np. przez obrót, o wektor, lub symetrycznie), przesuń, wyciągnij, przytnij lub wydłuż, podziel, utnij, utwórz otwór, itp.

Przykład: Kopiowanie elementów

Definicja widoku 3D w obszarze roboczym: na pasku narzędzi Zdefiniowane widoki, kliknij (lub naciśnij <Alt + 6>).

1. Naciśnij <Ctrl + A> aby zaznaczyć wszystkie elementy w modelu.
2. Kliknij prawym klawiszem w obszarze rysunku i z menu kontekstowego wybierz Kopiuj (lub naciśnij <Insert>).
3. W oknie „Kopiowanie wielokrotne” zdefiniuj parametry kopiowania:
 - Kopiowanie przez Translację;
 - Wektor: 0 6 0;
 - Liczba: 3.
5. Aby zatwierdzić naciśnij Kopiuj.

17
Tworzenie pozostałych elementów kondygnacji:

- W pilocie, wybierz podsystem **Kondygnacja > Belki.**
- Wybierz narzędzie wstawiania elementu liniowego i narysuj belkę w modelu (stał S235, przekrój HEA180).
- Wybierz poprzeczną belkę i skopiuj ją dwukrotnie w kierunku 0 2 0.
- Wybierz dwie skopiowane belki i zdefiniuj w oknie właściwości materiał S235 oraz przekrój IPE200.
- Skopiuj dwukrotnie wybrane belki w kierunku 0 6 0.

Generowanie obciążeń

Obciążenia są generowane oraz organizowane przy użyciu pilota. Obciążenia znajdują się w Pilocie w grupie „Obciążenia” jako poszczególne przypadki (ciężar własny, statyka, sejsmika itp.) oraz jako rodziny przypadków (obciążenia stałe, obciążenia zmienne, śnieg, wiatr, temperatura, itp.). Każda rodzina może zawierać kilka przypadków obciążeń, każdy przypadek może zawierać kilka obciążeń.

Obciążenia są wstawiane przy użyciu poszczególnych opcji dostępnych na pasku **Modelowanie,** w pilocie lub w menu. Można również użyć automatycznych narzędzi (np. generator parcia, generator obciążeń klimatycznych, obciążenia na wybranych elementach itp.).

Parametry obciążeń, przypadków oraz rodzin obciążeń są definiowane w poszczególnych oknach właściwości. Obciążeniami można zarządzać przy pomocy poleceń z menu kontekstowego w pilocie.

Po zdefiniowaniu obciążeń, można utworzyć kombinacje obciążeń oraz obwiednie (używając pilota lub poleceń z menu **Analiza**). Użytkownik może sam utworzyć kombinacje obciążeń lub skorzystać może z normowych kombinacji obciążeń które są dostępne w Advance Design.
Przykład: Generowanie obciążen

Tworzenie ciężaru własnego

Z paska menu, wybierz: **Utwórz > Obciążenia > Obciążenie stałe**. Rodzina "Obciążeń stałych" oraz przypadki obciążeń stałych zostaną automatycznie utworzone w pilocie.

Tworzenie obciążenia zmiennego

Tworzenie płyty kondygnacji. W pilocie: wybierz podsystem **Kondygnacja > Płyty**. Aby narysować płytę jak na poniższym rysunku wybierz z paska narzędzi **Modelowanie** opcję . W oknie właściwości płyty zdefiniuj grubość **15 cm**.

1. W pilocie: kliknij prawym klawiszem na **Obciążenia** i z menu kontekstowego wybierz opcję **Utwórz rodzinę przypadku**.
2. W wyświetlanym oknie wybierz **Obciążenia zmienne**.

Rodzina obciążeń zmiennych wraz z odpowiednim przypadkiem zostały utworzone w pilocie.

4. W pilocie wybierz przypadek obciążenia **2Q**.
5. Wybierz płytę kondygnacji w modelu.
6. Kliknij prawym przyciskiem myszki i z menu kontekstowego wybierz **Obciążenia / wybór**.
7. W wyświetlanym oknie właściwości obciążeń powierzchniowych: wprowadź wartość dla obciążenia na kierunku **FZ: -5 kN**.
8. Naciśnij <OK>.

Generowanie obciążeń śniegiem

Tworzenie belek oraz ściany wiatrowej na ramie portalowej:

- **Utwórz** dwie podłużne belki o przekroju **R40*60** oraz materiale **C20/25** w podsystemie **Rama portalowa > Belki**.
- **W pilocie**: wybierz podsystem **Rama portalowa > Ściany wiatrowe**. Wybierz dwie podłużne belki; kliknij prawym przyciskiem myszki i z menu kontekstowego wybierz **Ściana wiatrowa na wybranych elementach**. Aby włączyć tryb prezentacji „Osie”, który pozwala na podgląd kierunku ścian wiatrowych, na pasku narzędzi **Rendering** kliknij na . W oknie właściwości ściany wiatrowej: ustaw kierunek przęsła prostopadle do podłużnych belek, ze względu na lokalne osie ścian wiatrowych.
1. W pilocie: kliknij prawym klawiszem na **Obciążenia** i utwórz rodzinę obciążeń śniegiem, postępując analogicznie do poprzedniego przypadku.

Rodzina obciążeń śniegiem oraz przypadek obciążenia śniegiem są utworzone w pilocie.

2. W oknie właściwości dla rodziny obciążenia śniegiem:
 - W polu "Obciążenie śniegiem" wpisz 0.52 kN/m².
 - W polu "Wysokość" wpisz 250.00 m.

3. Aby automatycznie wygenerować obciążenie śniegiem na ściance wiatrowej, wybierz z menu głównego **Utwórz > Obciążenia > Obciążenie klimatyczne**.

Przykład: Tworzenie kombinacji obciążeń

1. W pilocie, kliknij prawym klawiszem myszy na **Kombinacje** i z rozwijalnego menu wybierz **Właściwości**.

2. W oknie "Kombinacje", kliknij na przycisk **Definiuj**.

3. Zdefiniuj obciążenia zmienne i obciążenia śniegiem jako czynniki dominujące.

4. Kliknij **Utwórz**.

Definiowanie analiz

Na etapie modelowania Advance Design pozwala na wybór różnych typów analiz (np. analiza modalna, wyboczenie, statyczna nieliniowa) oraz globalnych hipotez obliczeniowych dla stali oraz żelbetu.
Wymienione wyżej rodzaje analiz dostępne są w menu Hipotezy. Dla każdego typu analizy automatycznie tworzony jest standardowy przypadek analizy. Zarządzanie analizami odbywa się poprzez polecenia w piłocie. Sprawdź oraz wybierz utworzone analizy w piłocie. Parametry przypadków analiz są definiowane w oknie właściwości.

Przykład: Definiowanie analizy modalnej

3. Definicja parametrów formy:
 - Liczba form drgań: 10
 - Definicja mas: z rozwijalnej listy, wybierz masy pochodzące z kombinacji obciążzeń statycznych oraz w polu „Kombinacje” znajdującym się poniżej kliknij na aby otworzyć okno kombinacji mas. Tutaj zdefiniuj następujące kombinacje: 1*1G + 0.6*2Q.
 - W polu „Procent na kierunku Z” wprowadź: 0.

Weryfikacja modelu

W dowolnym momencie pracy z modelem, spójność oraz poprawność modelu może zostać zweryfikowana przy pomocy funkcji sprawdzenia modelu. Uruchom komendę Analiza > Sprawdź lub na pasku narzędzi Modelowanie kliknij na . Jeżeli program znajdzie jakieś błędy lub ostrzeżenia zostaną one wyświetcone w linii komend.
ANALIZA: SIATKOWANIE I OBLICZENIA

Po sprawdzeniu spójności oraz poprawności wykonania modelu, program utworzy model analityczny. Na tym etapie przeprowadzane są obliczenia MES oraz wybrane analizy konstrukcji (analiza stali/żelbetu).

Tworzenie modelu analitycznego

Aby utworzyć siatkę oraz obliczyć konstrukcję należy najpierw utworzyć model analityczny. Jeżeli poprawność modelu została już sprawdzona, utwórz model analityczny wybierając opcję Analiza > Utwórz model analityczny lub w pilocie kliknij na .

Kreator obliczeń pozwala na wybór operacji takich jak sprawdzenie, tworzenie siatki, weryfikacja siatki, obliczenia MES, obliczenia żelbetu czy obliczenia stali.

Składniki modelu analitycznego znajdują się w pilocie w trybie Analiza. Polecenia zarządzania operacjami analizy są dostępne dla każdego elementu w menu kontekstowym.

Po utworzeniu modelu analitycznego pasek modelowania zostanie wyłączony a pojawi się nowy pasek narzędzi Analiza - hipotezy.
Siatka

W Advance Design dostępne są dwa algorytmy MES dla siatkowania: "Siatka standardowa" i "Delaunay".

Siatkowanie elementów skończonych jest wykonywane zgodnie z globalnymi ustawieniami siatki (dostępnymi w menu Opcje > Siatka) oraz parametrami indywidualnie zdefiniowanymi dla poszczególnych elementów w oknie ich właściwości. Parametry siatki dla każdego elementu mogą być definiowane metodą uproszczoną (np. gęstość siatki wzdłuż każdej lokalnej osi) lub metodą szczegółową (np. różne gęstości siatki na każdej krawędzi elementu).

Przykład: Definiowanie siatkowania dla modelu

Tworzenie modelu analitycznego oraz siatki
1. Aby otworzyć okno "Sekwencja obliczeń" w pilocie kliknij na .
2. Wybierz Utwórz siatkę i naciśnij <OK>.

Advance Design tworzy model analityczny, który zawiera model siatkowania konstrukcji.

Zmiana zagęszczenia siatki
1. Z menu, wybierz Opcje > Siatki.
2. W oknie "Opcje siatki" zmień gęstość siatki: w polu "Domyślny rozmiar elementu" wpisz wartość 0.5 metra.

Ponowne tworzenie siatki
Na pasku narzędzi Analiza - hipotezy kliknij .

Siatka zostanie zmieniona stosownie do globalnych ustawień.
Obliczenia

Obliczenia metody elementów skończonych

Silnik obliczeniowy metody elementów skończonych pozwala na obliczenia konstrukcji stosownie do założonych hipotez:

- Zdefiniowane analizy (statyka i dynamika, analiza liniowa i nieliniowa, duże przemieszczenia, uogólnione wyboczenie itp.)
- Parametry obliczeń MES (definiowane w oknie właściwości)

Aby zoptymalizować szybkość obliczeń oraz konsumpcję pamięci przed uruchomieniem obliczeń można wybrać typy elementów, które mają zostać obliczone oraz wymagane rodzaje wyników.

Pracując w trybie Analiza istnieje możliwość określenia, dla których rodzajów analiz program ma przeprowadzić obliczenia (za pomocą komend w pilocie).

Advance Design umożliwia także wykonanie obliczeń etapami (istnieje możliwość wprowadzania zmian po każdym etapie).
Wymiarowanie elementów żelbetowych

Program umożliwia wymiarowanie elementów żelbetowych w stanie granicznym użytkowania (SGU) i w stanie granicznym nośności (SGN) oraz sprawdza przekroje elementów żelbetowych przy pomocy krzywych interakcji.

Obliczenia elementów żelbetowych mogą zostać przeprowadzone tylko wtedy, gdy zdefiniowane zostaną kombinacje oraz wykonane zostaną obliczenia MES. Obliczenia żelbetu uwzględniają lokalne oraz globalne hipotezy obliczeniowe:

Globalne hipotezy obliczeniowe dla żelbetu

Odnoszą się do metod kalkulacji żelbetu, sprawdzania słupów, rodzaju zbrojenia, parametrów wyboczeniowych, itp.

Lokalne hipotezy obliczeniowe dla żelbetu

Lokalne hipotezy obliczeniowe dla żelbetu są definiowane w oknie właściwości dla poszczególnych elementów.

Wymiarowanie elementów stalowych

Advance Design posiada silnik projektowy dla konstrukcji stalowych, pozwalający na wymiarowanie konstrukcji stalowych według zaimplementowanych w programie norm. Advance Design sprawdza przemieszczenia, wytrzymałości przekrojów, stateczność związaną z efektami drugiego rzędu (wyboczeniem oraz zwichrzeniem), oraz pozwala zoptymalizować profile stalowe.

Obliczenia stali mogą zostać przeprowadzone tylko wtedy gdy utworzono standardową kombinacje obciążen oraz wykonane zostały obliczenia MES.
Obliczenia stali uwzględniają globalne oraz lokalne hipotezy obliczeniowe:

Globalne hipotezy obliczeniowe dla stali

Odnoszą się do metod kalkulacji stali, kryteriów optymalizacji, metod kalkulacji wybuczenia, itp.

Lokalne hipotezy obliczeniowe dla stali

Lokalne hipotezy obliczeniowe dla stali znajdują się w oknie właściwości poszczególnych elementów.

Uwaga: Po wykonaniu obliczeń, można sprawdzić wyniki oraz modyfikować parametry elementów. Poszczególne obliczenia mogą być powtarzane w celu uzyskania wymaganych rezultatów.

Przykład: Uruchomienie kompletnej sekwencji obliczeń

1. Z menu, wybierz Analiza > Oblicz.
2. W oknie "Sekwencja obliczeń", wybierz:
 - Obliczenia MES,
 - Obliczenia dla żelbetu,
 - Obliczenia stali.

W wierszu poleceń wyświetlane zostaną informacje o bieżącym statusie obliczeń.
ANALIZA WYNIKÓW (POST-PROCESSING)

Po wykonaniu obliczeń przechodzimy do kolejnego etapu nazwanego post-processingiem (analizą wyników). Na tym etapie wyświetlane są wyniki obliczeń na modelu w raportach, wykresy wyników dla wybranych elementów itp.

Graficzna prezentacja wyników

Na etapie post-processingu dostępny jest nowy zestaw narzędzi oraz poleceń. Mamy możliwość wyświetlania wymaganych wyników w różnych trybach. Dostępnych jest kilka możliwości sposobu prezentacji wyników:

- Przez wybór wyników bezpośrednio z jednego z trzech pasków narzędzi.

- Używając okna dialogowego konfiguracji wyników, które pozwala na szczegółowe ustawienia wyświetlanymi wyników. Dostępne są następujące tryby wizualizacji: kolory, wartości, konstrukcja odkształcona, iso-obszary, iso-regiony wektory.
Przykład: Tworzenie graficznego post-processingu wyników MES

Przemieszczenia płyty kondygnacji

2. Zdefiniuj widok (-1, -1, 1) obszaru roboczego: na pasku narzędzi *Zdefiniowane widoki*, kliknij na . W oknie konfiguracji wyników w zakładce *Opcje*: zaznacz opcje *Wyświetl wyniki na konstrukcji odkształconej* oraz *Automatyczna skala odkształceń*.

3. W obszarze modelu kliknij prawym klawiszem i w menu kontekstowym odznacz opcję *Wyświetl siatkę*.

Wartości sił wewnętrznych w betonowych elementach liniowych

2. Z paska narzędzi **Analiza - wyniki MES**, wybierz rodzaj wyników **Siły**, typ **My** dla elementów liniowych, kombinacja nr **101**. Kliknij na aby przygotować post-processing.

Naprężenia w elementach stalowych

Najpierw, kliknij prawym klawiszem w obszarze modelu i z menu kontekstowego wybierz opcję **Anuluj wybór**.

1. Definiowanie nowego wyboru wg kryteriów: naciśnij **<Alt + S>**; w oknie "Wybór elementów" wybierz zakładkę **Materiał**, wybierz stal **S235**. Naciśnij na **<OK>**.

2. Z paska narzędzi **Analiza - wyniki MES**, wybierz rodzaj wyników **Naprężenia**, typ **Sxx** dla elementów liniowych, kombinacja nr **101**. Kliknij na aby przygotować post-processing.

Aby wyłączyć wyświetlanie wyników naciśnij i przytrzymaj klawisz **<Esc>** przez kilka sekund.
Wykresy wyników

Dzięki poleceniu “Wykresy wyników” można wyświetlić dowolne wyniki dla wybranego elementu (np. wyniki MES, przemieszczenia, siły, naprężenia oraz pole powierzchni zbrojenia).

Krzywe wyników mogą być utworzone dla elementów liniowych oraz elementów powierzchniowych przy użyciu funkcji przekroju. Wykresy wyników mogą być konfigurowane przy użyciu opcji dostępnych w oknie wykresu. Wykres można zapisać jako obraz oraz wydrukować.

Przykład: Wyświetlanie wykresów wyników w wybranych przekrojach

Tworzenie przekroju:
- Kliknij prawym klawiszem w obszarze modelu i z menu kontekstowego wybierz Utwórz obiekt > Utwórz przekrój.
- Utwórz przekrój po długości płyty kondygnacji jak na rysunku obok.

Następnie, wybierz rodzaje analiz, które mają być wyświetlane na wykresie i sprawdź wyniki:
1. Naciśnij <Alt + Q> aby otworzyć okno dialogowe "Analizy i kombinacje".
2. W zakładce Siły, kliknij Żaden aby odznaczyć wszystkie kombinacje obciążeń, następnie wybierz tylko kombinację 101.
3. Zaznacz utworzoną wcześniej linię przekroju.
Wykresy naprężeń

Analiza rozkładu naprężeń dla wybranego przekroju może zostać wywołana za pomocą polecenia naprężenia w przekroju. Otrzymany wykres naprężeń. Wykres naprężeń pozwala na wyświetlenie wyników naprężeń w dowolnym punkcie elementu liniowego.

Przykład: Wyświetlanie wykresu naprężeń

1. Wybierz belkę kondygnacji, dla której chcesz pokazać wyniki naprężeń:
 - Przesuwając kursor myszy nad belkę zostaną wyświetcone informacje o elemencie.
 - Naciśnij klawisz <Tab> aby przejść na kolejny element znajdujący się pod kursorem myszki; gdy kursor pokazuje wymaganą belkę (np. materiał S235, przekrój HEA180) – kliknij aby ją wybrać.

2. Z menu wybierz Analiza > Naprężenia w przekroju.
 W nowym oknie dialogowym pojawi się wykres naprężeń. Użyj suwaka, aby sprawdzić naprężenia w dowolnym miejscu po długości belki.
Animacja post-processingu

Advance Design pozwala na utworzenie dowolnej animacji, począwszy od graficznych wyników post-processingu, kończąc na przemieszczeniach oraz deformacji konstrukcji.

Na pasku narzędzi **Animacja** znajdują się wszystkie komendy niezbędne do nagrania animacji.

Przykład: Tworzenie animacji post-processingu

1. Na pasku narzędzi **Analiza - wyniki MES** wybierz następujące wyniki:
 - W polu rodzaj wyników wybierz **Formy własne**.
 - Z rozwijalnej listy analiz wybierz pozycję **Forma własna 2**.
 - Kliknij na aby przygotować post-processing.

 Aby zatrzymać animację: naciśnij <Esc>.
Analiza wyników wymiarowania

Na etapie post-processingu, gdy obliczenia zostały wykonane można wyświetlić wyniki wymiarowania elementów żelbetowych i stalowych. Elementy stalowe oraz żelbetowe mogą zostać zoptymalizowane przy użyciu funkcji dostępnych w poszczególnych modułach projektowych.

Każdy moduł projektowy posiada oddzielny pasek narzędzi zawierający niezbędne polecenia oraz opcje.

![Diagram analizy wyników]

Wyniki dla żelbetu

Wyniki dla elementów żelbetowych (np. powierzchnia zbrojenia, długości wyboczeniowe, stopień zbrojenia) można wywołać z paska narzędzi Analiza – wyniki dla żelbetu, który jest dostępny po wykonaniu obliczeń żelbetu.

![Diagram analizy wyników żelbetu]

W oknie właściwości wybranych elementów żelbetowych (słupów) można sprawdzić krzywe interakcji w odniesieniu do przyjętych parametrów zbrojenia. Parametry te mogą być wyznaczone automatycznie przez moduł Expert Żelbet lub mogą być zdefiniowane przez użytkownika. W ten sposób można np. dostosować parametry dla słupa o dużej smukłości, narażonego na ukośne zginanie.

Przykład: Podgląd wyników podłużnego zbrojenia belek

1. Zdefiniuj widok (-1, -1, 1) obszaru roboczego naciskając <Alt + 6>.

2. W pilocie, wybierz system Rama portalowa > Belki i naciśnij klawisz <Spacje>.
3. Z paska narzędzi Analiza - wyniki dla żelbetu:
 - Wybierz typ wyników: Zbrojenie.
 - Wybierz wyniki dla elementów liniowych: Az.
 - Kliknij na aby przygotować post-processing.
Wartości powierzchni zbrojenia podłużnego zostaną automatycznie wyświetlone w formie wykresów. Wartości wyników są wyświetlane w legendzie.

Przykład: Podgląd wyników zbrojenia dla słupa

1. Wybierz jeden słup ramy portalowej.
2. W oknie właściwości przejdź do pola Zbrojenie w kategorii Design Expert.
3. Aby otworzyć okno "Zmiana zbrojenia podłużnego" kliknij na . Dla wybranego słupa można wyświetlić wartości zbrojenia rzeczywistego i obliczonego.
4. Aby otworzyć okno krzywych interakcji kliknij na Krzywe interakcji.
 Możemy sprawdzić położenie siły dla wybranego przekroju. Aby uzyskać dostęp do zaawansowanych opcji wizualizacji kliknij dwukrotnie na wykres. Krzywa interakcji zostanie wyświetlona w nowym oknie.
Wyniki dla stali

Po wykonaniu obliczeń dla stali, przy użyciu modułu Expert Stal sprawdzimy ugięcia, nośność przekrojów, stateczność związaną z efektami drugiego rzędu (wyboczeniem oraz zwichrzeniem) oraz zoptymalizujemy przekroje stalowe.

Jeżeli obliczenia dla stali zostały wykonane, wszystkie wyniki dostępne są na pasku narzędzi Analiza - wyniki dla stali.

Parametry obliczeń wyboczenia oraz zwichrzenia dla każdego stalowego elementu dostępne są w oknie ich właściwości.

Przykład: Weryfikacja stateczności elementów stalowych

1. Z paska narzędzi Analiza - wyniki dla stali:
 - Wybierz typ wyników: Stateczność.
 - Wybierz wyników: Wykorzystanie nośności.
 - Naciśnij .

2. Otwórz okno "Wyniki" poprzez naciśnięcie <Alt + Z>.

3. W zakładce Opcje zaznacz pozycję Ekstrema.

Optymalizacja elementów stalowych

Moduł do obliczeń stali weryfikuje elementy stalowe zgodnie z parametrami określonymi w globalnych hipotezach obliczeniowych dla stali.

Program identyfikuje profile stalowe o wyższym / niższym wskaźniku wykorzystania nośności i sugeruje profile, które mogą być zamiennie użyte.

Sugerowane profile mogą zostać zaakceptowane w całości lub tylko częściowo. Następnie, jeżeli jest to konieczne należy powtórzyć obliczenia MES oraz optymalizację konstrukcji. Operacje te mogą być powtarzane, aż do uzyskania prawidłowych wskaźników wykorzystania nośności dla wszystkich przekrojów.
Przykład: Optymalizacja profili stalowych

2. Naciśnij Akceptuj wszystko aby zaakceptować proponowane profile.
3. Naciśnij <OK> aby zamknąć i zastosować zaakceptowane profile.
4. Powtórz obliczenia metody elementów skończonych i obliczenia стали.

Po ukończeniu obliczeń, otwórz okno dialogowe “Sugerowane profile”. Jeżeli istnieją inne sugerowane profile, należy powtórzyć powyższe kroki, aż do uzyskania odpowiednich wskaźników wytyżenia.

Widoki post-processingu

Widok post-processingu zapisuje scenariusz post-processingu (np. typ oraz zawartość wyników, wybrane elementy oraz analizy, ustawienia wizualizacji wyników) wraz z ustawieniami wyświetlania modelu (np. z punktem patrzenia, renderingiem itp.). Dla każdego widoku post-procesingu zapisywany jest odpowiedni plik. Zapisane obrazy znajdują się w trybie Dokument w pilocie.

Widoki post-processingu automatycznie powtarzają zapisany post-procesing, bez konieczności ponownej konfiguracji. Widoki post-processingu wyświetlanie również zaktualizowane wyniki jeżeli zmienimy hipotezy projektowe.
Przykład: Tworzenie widoku post-processingu

1. Zdefiniuj widok (1, -1, 1) obszaru roboczego: naciśnij `<Alt + 5>`.
2. Ustaw wyświetlanie w trybie szkicu dla modelu analitycznego: na pasku narzędzi Rendering kliknij na .
3. Otwórz okno "Wyniki" poprzez naciśnięcie `<Alt + Z>`. W zakładce MES wybierz:
 - Rodzaj wyników Siły;
 - Wyniki My na elementach liniowych;
 - Wyniki Mxx na elementach powierzchniowych.
5. Aby zapisać post-processing na pasku Analiza - wyniki MES, kliknij na .

Aby otworzyć zapisany widok post-processingu: kliknij dwukrotnie ikonkę post-processingu w pilocie.

Raporty

Przykład: Generowanie raportu

1. Z głównego menu, wybierz Dokument > Raport standardowy; generator raportów automatycznie wczyta szablon dla standardowego raportu.

2. W zakładce Post-processing generatora raportów wybierz widok post-processingu.

3. W oknie zawierającym zawartość raportu kliknij na tabelę zawierającą siły w elementach powierzchniowych i kliknij na , aby pod wskazaną tabelą wstawić widok post-processingu.

5. Kliknij Utwórz aby rozpocząć tworzeniu raportu. Po zakończeniu generowania raportu zostanie on wyświetlony w określonej aplikacji.
Kanada
GRAITEC Inc.
183, St. Charles St. W.
Suite 300
Longueuil (Québec) Canada
J4H1C8
Tel. (450) 674-0657
Fax (450) 674-0665
Hotline (450) 674-0657
Toll free 1-800-724-5678
Web http://www.graitec.com/En/
Email info.canada@graitec.com

Francja
GRAITEC France Sarl
17 Burospace
91573 Bièvres Cedex
Tel. 33 (0)1 69 85 56 22
Fax 33 (0)1 69 85 33 70
Web http://www.graitec.com/Fr/
Email info.france@graitec.com

Niemcy, Szwajcaria, Austria
GRAITEC GmbH
Centroallee 263a
D-46047 Oberhausen Germany
Tel. +49-(0) 208 / 62188-0
Fax +49-(0) 208 / 62188-29
Web http://www.graitec.com/Ge/
Email info@graitec.de

Czechy, Słowacja
AB Studio spol. s r.o.
Jeremenkova 90a 140 00 PRAHA 4
Tel. +420/244 016 055
Fax +420/244 016 088
Hotline +420/244 016 050
Web http://www.abstudio.cz/
Email abstudio@abstudio.cz

Wielka Brytania
GRAITEC UK Ltd.
The Old Forge
Suth Road
Weybridge
Surrey KT13 9DZ
Tel. +44 (0)1932 858516
Fax +44 (0)1932 859099
Email sales@graitec.co.uk

Rosja
GRAITEC CJSC
Locomotivny Proezd 21, Build. 5,
Office 503
Moscow 127238
Tel. +7(495) 225-13-65
Fax. +7(495) 488-67-81
Email info.russia@graitec.com

Rumunia
GRAITEC Roumanie SRL
Str. Samuil Vulcan, Nr. 10 Sector 5
Bucuresti, Romania
Tel. +40 (21) 410 0119
Fax +40 (21) 410 0124
Mobile 0729 002 107
Web http://www.graitec.com/Ro/
Email sales@graitec.ro