SUPPORT
TECHNIQUE
STRUCTURE
Copyright© 2017 GRAITEC France

Toute reproduction personnelle, professionnelle ou commerciale de tout ou partie de cette documentation sous toute forme ou média et par quelque procédé que ce soit est formellement interdite.
Table des matières

PARTIE A] INTRODUCTION A REVIT

I] PRESENTATION DU LOGICIEL

a) Les familles ... 8
b) Les gabarits ... 8
c) Les versions ... 8

II] PRESENTATION DE L'INTERFACE

a) La zone de dessin .. 8
b) Le ruban .. 8
c) L'arborescence du projet .. 9
d) La fenêtre de propriétés .. 9
e) Les différentes barres ... 10
f) Le menu de l'application .. 10

III] ELEMENTS DE BASE POUR L'EXPLOITATION DE LA MAQUETTE NUMERIQUE

a) Se déplacer ... 11
b) Zoomer .. 11
c) Sélectionner un ou des élément(s) 11
d) Mesurer .. 11
e) Gérer l’épaisseur de lignes .. 11
f) Réaliser des coupes ... 12
 1. Dans les vues 2D .. 12
 2. Dans les vues 3D .. 12
g) Isoler ou masquer des éléments ... 13
h) Gérer les fenêtres ... 13
i) Gérer la visibilité et les graphismes d’une vue 14
j) Gérer les liens ... 14
 1. Création d’une liaison .. 14
 2. Gestion des liaisons ... 15

IV] ELEMENTS DE BASE POUR L'EXPLOITATION DES NOMENCLATURES

a) Champs .. 17
b) Filtre .. 17
c) Tri/Regroupement ... 18
d) Mise en forme .. 19

e) Apparence ... 19

PARTIE B] MODELISATION SOUS REVIT

I] DEMARRAGE DU PROJET .. 22

a) Choix d’un gabarit ... 22
 b) Mise en place des niveaux .. 22
 c) Importation et liaison de fichiers CAO ... 23
 d) Création de vues en plan de modélisation ... 24
 1. Création de vue 2D .. 24
 2. Création de vue 3D .. 24
 e) Organisation des fichiers et enregistrement .. 24

II] CREATION DU MODELE .. 25

a) Les murs ... 25
 b) Les murs rideaux .. 26
 c) Les fonctions de l’onglet Modifier les plus courantes 27
 d) Les sols .. 28
 e) Les portes et les fenêtres .. 29
 1. Les portes .. 29
 2. Les fenêtres .. 30
 f) Les fonctions de duplication ... 30
 g) Les toits ... 30
 1. Les toits par tracé ... 30
 2. Les toits par extrusion .. 31
 h) Les escaliers .. 32
 1. Escalier par composant .. 32
 2. Escalier par esquisse ... 33
 i) Les poteaux .. 33
 j) Les composants ... 33
 1. Placer un composant ... 34
 2. Créer in situ ... 34
 k) Les plafonds ... 36
 l) Les pièces .. 36
 1. Création de pièces .. 36
 2. Limite et séparateur de pièces ... 36
m) Les rampes d’accès .. 37

III) LE MODE COLLABORATIF .. 37
 a) Présentation du travail en réseau .. 37
 b) Mise en place du mode collaboratif .. 38
 1. Création du fichier central ... 38
 2. Création des fichiers locaux .. 39
 c) Utilisation du mode collaboratif ... 39
 1. A chaque utilisateur sa vue 3D ... 39
 2. Création des sous-projets .. 40
 3. Exploitation des sous-projets ... 41

IV) PERSONNALISATION DU MODELE ... 41
 a) Création de paramètres .. 41
 1. Paramètres du projet ... 41
 2. Paramètres partagés .. 42
 b) Création de familles .. 43
 c) Création de gabarit ... 46
 1. Création d’un gabarit de projet .. 46
 2. Ajout du gabarit aux favoris .. 47
 d) Style de plumes ... 47
 e) Implantation du projet en coordonnées .. 49
 1. Présentation du problème ... 49
 2. Implantation du projet .. 50

PARTIE C] RENDU SOUS REVIT

I] DOCUMENTATION DU PROJET .. 54
 a) Vue en perspective .. 54
 b) Vue de légende ... 54
 c) Vues dépendantes ... 55
 d) Vues de nomenclature .. 55
 e) Organisation des vues dans l’arborescence du projet ... 56
 f) Vues réutilisables ... 57
 1. Exporter les vues et les feuilles ... 57
 2. Insérer les vues ... 57
 g) Gabarits de vue ... 58
h) Les principales fonctions de la barre de contrôle de l’affichage.......................... 58
i) Annotations et détails... 59
 1. Annotations textuelles .. 59
 2. Cotations .. 59
 3. Etiquettes d’éléments et de matériaux ... 60
 4. Outils de dessin 2D .. 60

II] PRESENTATION DES DOCUMENTS ... 61
 a) Les feuilles de mise en page .. 61
 1. Création des feuilles de mise en page .. 61
 2. Insérer des éléments sur les feuilles ... 62
 b) Le cartouche ... 62
 c) Configuration de l’impression .. 64
 d) Exports .. 65

III] RENDU ... 66
 a) Apparence des matériaux ... 66
 1. Les matériaux et leur attribution .. 66
 2. Le Navigateur de matériaux ... 67
 3. Créer un matériau dans le Navigateur de matériaux .. 68
 b) Rendu photo-réaliste .. 69

ANNEXES

COMPLEMENTS SUR REVIT ... 72
 I] Les plug-in d’EXCHANGE APPS ... 72
 II] Les développements GRAITEC ... 72

TUTORIEL N°1 : CREATION D’UNE FAMILLE 3D : POTEAU EN T ... 74
 I] Le choix du gabarit ... 74
 II] La création des plans de référence .. 74
 III] Le tracé de la géométrie ... 75
 IV] La mise en place des contraintes ... 75
 V] La création des variables ... 76
 VI] L’enregistrement et le chargement dans le projet ... 76
TUTORIEL N°2 : CREATION D’UNE FAMILLE 2D : ETIQUETTE DE DALLE .. 78

I] Créer un paramètre pour récupérer la notion d’épaisseur de dalle .. 78
 a) Création du paramètre partagé « Epaisseur » ... 78
 b) Création du paramètre « Epaisseur » dans le projet .. 78
 c) Renseignement du paramètre « Epaisseur » dans le projet .. 79

II] Générer l’étiquette .. 79
 a) Le choix du gabarit ... 80
 b) L’attribution de la catégorie et des paramètres de famille ... 80
 c) La création du libellé ... 80
 d) La modification de l’apparence du libellé ... 81
 e) La modification de l’apparence de l’étiquette ... 82
 f) L’enregistrement et le chargement dans le projet .. 83

TUTORIEL N°3 : GESTION DES IMPACTS ... 84

I] Création d’un paramètre « Impact » .. 84

II] Renseignement du paramètre pour les éléments qui ont un impact 84

III] Création de filtres d’impact dans la vue en plan concernée ... 85

IV] Mise en forme des filtres .. 86

TUTORIEL N° 4 : LE MODELE ANALYTIQUE .. 88

I] Paramétrage du modèle analytique ... 88
 a) Paramètres du modèle analytique.. 88
 b) Paramètres de condition d’appui / Paramètres de représentation symbolique 88
 c) Cas de charges .. 89
 d) Les combinaisons de charge .. 89
 e) Les réglages analytiques ... 90

II] LES CONDITIONS D’APPUI ET LES CHARGEMENTS .. 91
 a) Les conditions d’appui .. 91
 b) Les chargements ... 91
 c) Les vérifications ... 92
PARTIE A] : INTRODUCTION À REVIT

I] PRESENTATION DU LOGICIEL

a) Les familles
Le logiciel Autodesk Revit fonctionne sur le principe d’un gros lego : tout projet (de format .rvt) est constitué d’un ensemble de blocs appelés « familles » (de format .rfa).

Et nous distinguons 3 types de familles :
- « système » : intégrées au logiciel on ne peut pas les créer mais on peut les personnaliser ;
- « in situ » : créées directement dans le projet, elles sont réalisées sur mesure et ne sont ni paramétrables, ni réutilisables ;
- « externes » : modélisées par nos soins dans un éditeur de famille, ces familles sont paramétrables et réutilisables. Ce sont les seules qui peuvent constituer un fichier rfa.

b) Les gabarits
Afin de créer un projet, ou une famille, nous travaillons à partir d’un gabarit qui correspond à notre base de travail (de formats respectifs .rte ou .rft).

<table>
<thead>
<tr>
<th>Extension</th>
<th>Fichier</th>
<th>Gabarit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projet</td>
<td>.rvt</td>
<td>.rte</td>
</tr>
<tr>
<td>Famille externe</td>
<td>.rfa</td>
<td>.rft</td>
</tr>
</tbody>
</table>

c) Les versions
Il existe actuellement quatre versions du logiciel Revit : une dédiée à la structure seule, une autre à l’architecture seule, une autre encore au MEP uniquement, et enfin une aux trois disciplines ensemble. Ces différentes versions sont toutes compatibles entre elles.

Attention ! Le logiciel Revit ne permet pas l’enregistrement des fichiers à des versions antérieures. Par exemple, un projet réalisé sur une version Revit 2017 ne pourra pas être enregistré en version 2016.

II] PRESENTATION DE L’INTERFACE

L'interface du logiciel est constituée de nombreux éléments.

a) La zone de dessin
On y visualise ce qu’on trace, et les éléments sélectionnés, ou en cours de manipulation, y apparaissent en couleur.

b) Le ruban
Il affiche et regroupe les boutons donnant accès aux commandes à travers des :
- onglets fixes, présents lorsqu’on ouvre ou crée un fichier :
 - Architecture, Structure et Systèmes : pour la création des éléments 3D du modèle ;
 - Insérer : utilisé pour l’insertion d’éléments ;
 - Annoter : pour la création des éléments 2D du modèle ;
 - Volume et site : pour tout ce qui est relatif à l’insertion de la maquette dans son environnement ;
 - Collaborer : pour la gestion de la maquette en réseau ;
 - Vue : pour les options relatives aux vues ;
 - Gérer : pour la gestion des paramètres du projet ;
 - Compléments et Modules: on y trouve les plug-in et autres éléments téléchargeables ;
 - Modifier : l’onglet s’active pour toute modification d’élément.
• **onglets contextuels** : différenciés par leur couleur en fond vert, ils s’affichent lors de la modification ou de la création d’un élément.

![Onglets contextuels](image)

c) L’arborescence du projet

C’est le gestionnaire des vues, des nomenclatures, des feuilles, des familles, des groupes, et des liens du projet. On y sélectionne, par un double clic, la vue dans laquelle on souhaite travailler.

Le petit symbole devant les rubriques (Vues, Nomenclatures, Families,...) permet de développer, ou pas, la liste des éléments qu’elles contiennent (pour plus de précisions, cf paragraphe e)I[Partie C]).

d) La fenêtre de propriétés

Elle affiche les propriétés des éléments sélectionnés, et on peut les y modifier avec :

1. **Le sélecteur de type** : menu déroulant permettant de modifier la famille et/ou le type de l’objet ;
2. **La boîte de dialogue « Propriétés du type »** (accessible avec l’onglet « Modifier le type ») ;
3. **La palette de propriétés** : pour les modifications de propriétés d’occurrence.

![Fenêtre de propriétés](image)

Remarque : *quelle est la différence entre propriétés du type et propriétés d’occurrence ?*

Chaque famille est constituée de plusieurs types, et au sein de ceux-ci nous trouvons les occurrences qui rendent ainsi notre élément particulier. Ainsi, la modification d’un paramètre de type a une incidence sur tous les éléments du même type, alors que la modification d’un paramètre d’occurrence n’aura de conséquence que sur l’élément sélectionné.

Les paramètres de type sont modifiables dans la boîte de dialogue Propriétés du type tandis que les paramètres d’occurrence sont gérés directement dans la fenêtre de propriétés. Prenons l’exemple de la porte ci-dessous : la hauteur sous linteau est un paramètre d’occurrence tandis que la largeur, la hauteur et l’épaisseur sont des paramètres de type.

![Propriétés du type](image)
e) **Les différentes barres**

Le logiciel affiche trois barres fixes et une contextuelle :

- **La barre d’outils d’accès rapide** : située en haut de l’interface, elle affiche les commandes les plus fréquentes (ouvrir un fichier, enregistrer, revenir à l’étape précédente ou passer à la suivante, fermer ou basculer les fenêtres de vues, passer de lignes épaisses à des plus fines,...)

- **La barre d’options** : située sous le ruban à la sélection ou la création d’un élément, elle renvoie des options de la commande en cours.

- **La barre de contrôle de l’affichage (ou de vue)** : située en bas à gauche de la vue de dessin, elle regroupe les commandes de gestion de la vue (échelle, style visuel, ombres, masques,...).

- **La barre d’état** : située en bas de l’interface, elle indique le nom et le type de la famille de tout élément sélectionné. On y trouve également un filtre et des onglets d’autorisation de sélection à droite.

f) **Le menu de l’application**

Il donne accès aux actions courantes concernant les fichiers (nouveau, ouvrir, enregistrer, imprimer, fermer).

On y trouve également des outils d’échange (exporter, publier), et un bouton d’accès aux options d’Autodesk Revit (Options).

Le bouton Options permet de modifier des paramètres de l’interface Revit (tels que le nom de l’utilisateur, les intervalles d’enregistrement, les raccourcis clavier, les couleurs de sélection, les chemins d’enregistrement et les gabarits présents sur la page d’ouverture du logiciel...).

Récapitulatif sur l’interface :
III] ÉLÉMENTS DE BASE POUR L’EXPLOITATION DE LA MAQUETTE NUMÉRIQUE

Afin de se déplacer et d’exploiter au maximum notre maquette numérique il existe quelques commandes de base.

a) **Se déplacer**

Pour se déplacer dans les vues 2D on maintient la molette de la souris enfoncée.

Dans les vues 3D, cette opération permet uniquement de se déplacer dans un plan fixe. Pour tourner autour de la maquette il faut, en plus de maintenir la molette enfoncée, appuyer sur la touche MAJ.

b) **Zoomer**

Il s’effectue à l’aide de la molette de la souris dans les vues 2D et 3D.

Dans les vues 3D quelques raccourcis clavier peuvent être utiles pour se placer rapidement :

- **ZA** (abréviation de Zoom All) : permet d’avoir un zoom général de la vue ;
- **ZR** (abréviation de Zoom Région) : permet, en traçant un cadre, de ne se focaliser que sur une partie du projet rapidement.

c) **Sélectionner un ou des élément(s)**

En cliquant sur un élément, qui apparaît alors en couleur, on peut accéder à ses propriétés et le modifier.

Concernant les sélections multiples on peut générer un cadre :

- **En partant du coin en haut à gauche** : seuls les éléments entièrement compris dans le cadre sont retenus (le cadre apparaît en trait plein);
- **En partant du coin en bas à droite** : tout élément, même partiellement inclus, est retenu (le cadre apparaît en pointillés).

Et, si on souhaite supprimer un élément de la sélection on peut recourir à la touche MAJ du clavier.

On peut également utiliser la touche CTRL pour sélectionner plusieurs éléments particuliers.

d) **Mesurer**

Disponible dans la barre d’outils d’accès rapide, on retrouve également cet outil dans l’onglet Modifier. Une fois qu’il est engagé, il suffit de cliquer sur les extrémités de l’élément à mesurer (ou sur l’élément lui-même, suivant l’option choisie dans le menu déroulant de l’icône : Mesurer entre deux références ou Mesurer le long d’un élément).

La gestion des paramètres d’unités se fait dans la boîte de dialogue Unités, qu’on ouvre en cliquant sur l’icône Unités dans l’onglet Gérer (ou avec le raccourci clavier UN).

e) **Gérer l’épaisseur de lignes**

Quand on ouvre un fichier, il arrive que les lignes apparaissent avec une forte épaisseur. Pour y remédier, on peut utiliser l’outil Lignes fines, qu’on trouve dans la barre d’outils d’accès rapide, ou le raccourci clavier TL.
f) Réaliser des coupes

1. Dans les vues 2D
 On retrouve l’outil coupe dans la barre d’outils d’accès rapide ainsi que dans l’onglet Vue. Il suffit alors de tracer le trait de coupe. Pour visualiser la coupe on fait un clic droit sur le trait de coupe et, dans le menu contextuel qui apparaît, on clique sur Aller à la vue.
 L’étendue de la vue de coupe peut être gérée grâce au symbole des triangles inversés. On peut également choisir le sens de la vue de coupe avec le symbole de double flèche.
 Les symboles de petite vague et de flèches qui tournent permettent quant à eux de gérer l’affichage du trait de coupe sur le plan.

2. Dans les vues 3D
 Dans ce type de vue, il faut activer la zone de coupe dans la fenêtre de propriétés de la vue 3D en cochant la case Zone de coupe. Cette dernière apparaît alors à l’écran.
 Pour gérer l’étendue de la zone de coupe, et ainsi se déplacer dans notre projet en 3D, on la sélectionne et on utilise les symboles des triangles inversés (on en trouve un sur chaque face).
g) **Isoler ou masquer des éléments**

Il peut être utile, pour l’exploitation de la maquette, de s’intéresser particulièrement à certains éléments. Pour cela, on sélectionne les dits éléments et on utilise l’outil **Masquer/Isoler**, disponible dans la barre de contrôle de l’affichage : lorsqu’il est engagé, le cadre de la vue apparaît en couleur.

Selon les besoins on peut :
- **Masquer un élément** : la vue en est alors privée ;
- **Isoler un élément** : rien d’autre que l’élément n’apparaît dans la vue.

Cet outil est applicable à l’élément lui-même, mais aussi à tous les éléments d’une même catégorie.

h) **Gérer les fenêtres**

Lorsqu’on travaille on utilise une multitude de fenêtres. On peut :
- **Visualiser une fenêtre en grand écran et laisser les autres cachées derrière** : on fait un double clic sur la vue souhaitée dans l’arborescence ;

- **Visualiser l’ensemble des fenêtres en multifenêtrage** : grâce au raccourci clavier **WT**.

Pour se déplacer entre les différentes fenêtres on peut utiliser l’outil **Basculer entre les fenêtres** disponible dans la barre d’outils d’accès rapide (la flèche déroulante permet alors de sélectionner la vue souhaitée), ou tout simplement recourir au raccourci clavier **CTRL+TAB**.

Il est recommandé de nettoyer régulièrement son « plan de travail » avec l’outil **Fermer les fenêtres cachées**, également disponible dans la barre d’outils d’accès rapide, afin de ne pas se perdre dans les nombreuses fenêtres ouvertes.
i) Gérer la visibilité et les graphismes d’une vue

Dans Autodesk Revit, chaque vue dispose de son propre style de visibilité et de graphisme (motifs, transparence, etc...). Pour le configurer, on ouvre la boîte de dialogue Remplacement visibilité/graphisme grâce à l’outil Visibilité/Graphisme dans l’onglet Vue, ou avec le raccourci clavier \VV\. Cette boîte de dialogue comporte cinq onglets initialement :

- **Catégorie de modèles** : pour les éléments 3D ;
- **Catégorie d’annotations** : pour les éléments 2D ;
- **Catégorie de modèles analytiques** : pour les éléments intervenant dans les calculs ;
- **Catégories importées** : pour tout élément importé dans le projet ;
- **Filtres**.

Dans la colonne **Visibilité**, on peut choisir, en cochant ou en décochant la case attribuée à une catégorie, de la faire apparaître ou de la masquer dans la vue.
On peut également déterminer l’affichage d’une catégorie en projection et en coupe dans les colonnes de **Projection/Surface** et de **Coupe** (quel motif ? quel contour ? quelle couleur ? affectée d’une transparence et, si oui, avec quel pourcentage ?).
La colonne **Demi-teinte** est quant à elle très utilisée pour les liaisons de fichiers CAO : faire apparaître un fond de plan DWG en demi-teinte permet un plus grand confort lorsqu’on travaille dessus.

j) Gérer les liens

Dans Autodesk Revit nous pouvons lier différents formats de fichier (tels que des formats CAD : DWG, DXF, DGN, SAT et SKP), mais également d’autres fichiers de projet Revit. Ceci est très pratique car nous pouvons ainsi décomposer notre projet en distinguant les bâtiments et le site.

1. Création d’une liaison

Nous nous plaçons dans la vue souhaitée et nous lançons la fonction Lier Revit, disponible dans l’onglet Insérer. Nous choisissons le fichier à insérer, et nous optons pour un positionnement Automatique - Centre à centre. Le modèle lié apparaît désormais dans l’interface graphique et nous retrouvons le lien dans l’arborescence.
Remarque : quand nous ouvrons la vue 3D il est possible que les projets apparaissent décalés en altimétrie. Ceci s'explique par le fait que les deux projets ne partagent pas les mêmes références altimétriques. Nous devons donc y remédier manuellement avec les fonctions d'édition (Déplacer, Aligner, Rotation) en s'aidant des niveaux dans les vues d’élévation, et de plans de référence dans les vue en plan.

2. Gestion des liaisons

Nous pouvons gérer les modèles liés avec la fonction Gestion des liens disponible dans l’onglet Insérer (ou par un clic droit sur Liens Revit dans l’arborescence). Une boîte de dialogue apparaît alors, comprenant cinq onglets : un pour chaque type de fichier que nous pouvons lier : fichier Revit, IFC, Formats CAO, Annotations DWF, ou Nuages de points.

Concernant les liens des fichiers Revit, plusieurs points sont déclinés dans le tableau :

- **Fichier lié** : quel est le nom du fichier ?
- **Type de référence** : quel est le mode de liaison du fichier (superposition ou attachement) ?
- **Positions non enregistrées** : le fichier possède-t-il un emplacement partagé (qui permet de positionner des fichiers liés par rapport à des emplacements partagés) ?
- **Chemin enregistré** : quel est le chemin de localisation du fichier lié ?
- **Type de chemin** : quel est le type de référence du chemin (relatif ou absolu) ? Sachant qu’il est préférable de se placer en relatif ;
- **Alias local** : quel est l'emplacement du modèle lié dans le cas d’une copie locale du modèle central ?

Nous pouvons également ajouter des liens dans la boîte de dialogue avec l’onglet Ajouter en bas à droite.

Remarque : en ouvrant la boîte de dialogue Remplacement visibilité/graphisme nous pouvons gérer les paramètres de visibilité des modèles liés dans l’onglet Liens Revit : masqué, ou visible en demi-teinte ou encore comme niveau de fond de plan. En cliquant sur l’onglet dans la colonne Paramètres d’affichage trois choix nous sont proposés :

- **Par vue d’hôte** : la vue d’hôte régit tous les paramètres de visibilité du modèle lié ;
• **Par vue liée** : nous sélectionnons le vue qui impose les paramètres de visibilité ;
• **Personnalisée** : nous configurons chaque paramètre de visibilité selon une vue d’hôte ou une vue liée.

IV] ELEMENTS DE BASE POUR L’EXPLOITATION DES NOMENCLATURES

Toutes les nomenclatures du projet sont rassemblées dans l’arborescence dans la rubrique **Nomenclatures/Quantités** : en double-cliquant sur une nomenclature on l’ouvre.

Afin d’organiser la nomenclature on dispose de cinq champs dans la fenêtre de propriétés : **Champs, Filtre, Tri/Regroupement, Mise en forme, et Apparence**. En cliquant sur l’un d’entre eux on ouvre la boîte de dialogue « Propriétés de la nomenclature », qui regroupe ces cinq champs sous forme d’onglets (on peut donc en changer directement dans la boîte de dialogue).
a) **Champs**

On sélectionne dans cet onglet les champs constituant la nomenclature : on sélectionne les champs souhaités dans la rubrique *Champs disponibles*, et on clique sur *Ajouter*. Les champs apparaissent alors dans la rubrique *Champs de nomenclature*.

Lorsqu’on sélectionne un champ dans la rubrique *Champs de nomenclature*, on peut modifier sa position dans le tableau grâce aux onglets en bas à droite : *Faire monter, Faire descendre*.

b) **Filtre**

Avec les filtres, on peut choisir de ne faire apparaître que certains éléments dans le tableau. Cet outil fonctionne selon trois points :

1. Quel est le champ concerné ?
2. Quelle est la condition de sélection ?
3. Quelle valeur doit prendre cette condition ?
c) **Tri/Regroupement**

On peut ensuite trier et regrouper les éléments filtrés par catégorie dans l’onglet Tri/Regroupement. Plusieurs options relatives au champ nous sont proposées (à cocher selon les besoins) :

- Données triées par ordre croissant ou décroissant ;
- Valeur du champ en en-tête ou pied de page ;
- Ligne vierge (autrement dit une séparation entre les différents groupes).
On peut également faire apparaître les totaux en cochant la case *Totaux* et en précisant lesquels on souhaite dans le menu déroulant (*Titre, nombre et totaux* ; *Titre et totaux* ; *Nombre et totaux* ; *Totaux uniquement*).

Enfin, on peut demander au logiciel de ne pas détailler la nomenclature en décochant la case *Détailler chaque occurrence* :

![Nomenclature quand la case « Détailler chaque occurrence » est décochée](image)

d) Mise en forme

L’onglet *Mise en forme* permet de mieux présenter notre nomenclature : on peut y gérer l’alignement dans les colonnes (à droite, à gauche ou centré), l’en-tête (quel champ on met dans la première colonne ? Avec quelle orientation ? Voire éventuellement le masquer).

Le logiciel propose également d’insérer des formats conditionnels afin de mettre en évidence certains éléments : on définit la condition dans l’onglet *Format conditionnel*, et on l’active avec la case *Afficher le format conditionnel sur les feuilles*.

Enfin, on peut demander au logiciel de calculer les totaux.

e) Apparence

Ce dernier onglet permet de gérer les lignes du quadrillage de la nomenclature (épaisseur des lignes, contour), et son texte (affichages des titres et en-têtes, police des différents textes).
PARTIE B] : MODELISATION SOUS REVIT

I] DEMARRAGE DU PROJET

Nous allons ici voir les étapes à suivre pour démarrer un projet.

a) Choix d’un gabarit

Afin de créer un projet Revit nous devons au préalable choisir le gabarit correspondant à nos besoins (préconfiguré et intégré dans le logiciel, ou créé par nos soins et à récupérer avec l’onglet Parcourir).

b) Mise en place des niveaux

Les niveaux définissent la trame verticale du projet, et sont des références pour placer nos composants.

En voici les étapes de création :

- Choix d’affecter une vue, ou pas, au niveau : on se place sur une vue d’élévation et, dans l’onglet Architecture, on clique sur l’icône Niveau. Dans la barre d’options qui s’affiche, on peut choisir d’affecter une vue en plan à notre niveau en cochant la case Réaliser une vue en plan. Si tel est le cas, le niveau apparaîtra avec un triangle bleu dans les vues d’élévation, sinon on aura alors un triangle noir ;

 ![Niveau](image)

- Tracer le niveau : on trace la ligne du niveau, d’abord approximativement en altimétrie, en prenant soin de s’aligner avec les autres (on commence par l’extrémité gauche et on étire jusqu’à l’extrémité droite) ;
- Préciser l’altimétrie du niveau : on entre les bonnes valeurs altimétriques et le nom de notre niveau par un double clic ;
- Contraindre en positionnement le niveau créé (autrement dit le verrouiller pour éviter qu’il ne se déplace quand on travaille) : on clique sur le petit cadenas apparaissant à la sélection du niveau.

Remarques : Concernant la présentation des niveaux...

- On peut choisir de faire apparaître, ou pas, les étiquettes aux extrémités des niveaux en cochant la petite case apparaissant à droite du niveau sélectionné ;
- On peut éviter les chevauchements des étiquettes des niveaux en cliquant sur la petite vague présente sur le niveau.
c) Importation et liaison de fichiers CAO

Maintenant que les niveaux sont créés, nous pouvons insérer un fichier CAO en fond de plan afin de travailler dessus.

Voici les étapes à suivre :

- **Insérer le fichier CAO** : On se place dans la vue en plan d’étage correspondant à l’étage du fond de plan à insérer et, dans l’onglet **Insérer**, on clique sur l’icône **Lier CAO**. On va alors chercher le fichier CAO dans la boîte de dialogue en spécifiant les points suivants : **Vue active uniquement**, et **Automatique-Centre à centre**. On vérifie également les unités.

- **Vérifier l’échelle** : on compare les cotations du plan aux mesures qu’on peut faire grâce à l’outil **Mesurer** (disponible dans la barre d’outils d’accès rapide).

- **Contraindre en positionnement le fond de plan** : on sélectionne le fond de plan et on utilise l’outil de verrouillage (symbolisé par une petite punaise dans l’onglet **Modifier**)

- **Mettre le fond de plan en demi-teinte** : dans la boîte de dialogue **Remplacements visibilité/graphisme**, accessible avec le raccourci clavier **V**, nous cochons la case **Demi-teinte** de la ligne correspondant à notre fond de plan (dans l’onglet **Catégories importées**).

- **Veiller à ce que les 4 petits symboles de coupe encadrent bien le fond de plan** (ils fixent le cadre des vues en élévation).
Remarques :

- Comment choisir le positionnement à l’insertion du fichier CAO ?
 Quand on a un fichier Autocad de coordonnées proches du zéro on peut choisir un positionnement à
 l’insertion Automatique - Origine à origine. Mais s’il est éloigné du zéro on optera pour un positionnement Automatique -
 Centre à centre car le logiciel revit est limité à un rayon de 33km.

- Pourquoi choisir une liaison CAO plutôt qu’un import ?
 Il est fortement recommandé de privilégier la liaison CAO plutôt que l’import pour plusieurs raisons :
 o le fichier sera plus léger ;
 o on évitera les problèmes dus aux mises à jour du Xref ;
 o on pourra récupérer les données du système de coordonnées disponibles dans le fichier DWG (du fait
 du lien et non d’un simple import).

d) Création de vues en plan de modélisation

1. Création de vue 2D

 Certaines vues en plan d’étage peuvent venir à manquer dans le gabarit choisi. Une fois nos niveaux placés,
 nous pouvons créer les vues 2D manquantes grâce à l’outil Vues en plan dans l’onglet Vue.

 La petite flèche déroule les vues qu’on peut créer, et nous choisissons «Plan d’étage ». Après avoir
 sélectionné le niveau correspondant, la vue est créée.

2. Création de vue 3D

 Il peut arriver que le gabarit ne contienne pas de vue 3D. Dans ce cas, nous cliquons sur l’icône Vue 3D par
 défaut dans la barre d’outils d’accès rapide.

e) Organisation des fichiers et enregistrement

Quand nous travaillons sur Autodesk Revit nous ouvrons et utilisons une quantité assez importante de fichiers. En
effet, il y a :
 • les fichiers que nous produisons (fichiers revit, exports) ;
 • les fichiers annexes que nous créons pour développer la maquette (gabarit, familles, paramètres partagés) ;
 • les fichiers sur lesquels nous nous basons pour la modélisation (imports CAO et autres fichiers reçus).

Il est donc indispensable de bien structurer l’organisation de nos fichiers.

Nous pourrions procéder ainsi :

Il est recommandé d’utiliser des noms de fichiers cohérents, et de mettre en suffixe la version de Revit sous
laquelle a été créée le modèle (par exemple : NomSociété_Archi_BâtimentB_V15).
II] CREATION DU MODELE
Nous allons maintenant nous pencher sur la modélisation du projet.
Pour cela, nous nous placerons toujours sur les plans d’étage et utiliserons les fonctions de l’onglet Architecture (si nous étions en phase de production nous utiliserions les plans de plafond et les fonctions de l’onglet Structure)

a) Les murs
Pour créer un mur, dans Architecture, nous cliquons sur l’onglet Mur. La petite flèche donne accès à un menu déroulant nous permettant de choisir entre mur architectural et mur porteur (le menu propose aussi des murs par face, mais nous les utilisons peu).

Une fois la fonction lancée, et avant de tracer notre mur, nous veillons aux éléments suivants :
• Le type de mur : nous le vérifions dans le sélecteur de type de la fenêtre de propriétés.
Si le type de mur voulu n’est pas proposé dans le menu déroulant du sélecteur de type, nous pouvons le créer à l’aide de l’onglet Modifier le type en dupliquant le mur sélectionné : nous lui attribuons un nouveau nom et à l’aide de l’onglet modifier dans la ligne structure nous régions sa constitution.
• Les options de tracé du mur :
 - définition du mur en hauteur et des contraintes inférieure et supérieure : on le vérifie dans la barre d'options rapide (la contrainte inférieure est fixée automatiquement en fonction de la vue sur laquelle on s’est placé quand on a lancé la commande, on la retrouve dans les propriétés) ;
 - choix de la ligne de justification du mur : ligne par rapport à laquelle le mur sera tracé ;
 - murs chaînés : cocher la case Chaîner permet de dessiner plusieurs murs sans relancer la fonction ;
 - décalage : pour insérer une ligne de justification en décalage ;
 - rayon : pour les rayons de courbure dans les angles des murs.

• Les décalages inférieur et supérieur : les murs peuvent nécessiter certains décalages en altimétrie qui sont réglables dans la fenêtre de propriétés.

On peut maintenant dessiner nos murs à l’aide des outils disponibles dans l’onglet Modifier du ruban.

Remarques : Astuces pratiques pour le tracé des murs
 - L’outil Choisir des lignes peut se révéler plus rapide lorsque nous disposons d’un fond de plan DWG car un simple clic sur l’élément suffit à sélectionner la ligne entière.
 - La barre espace du clavier permet de changer l’orientation du mur par rapport à la ligne de justification lorsqu’on trace.

b) Les murs rideaux

Pour créer un mur rideau nous mettons en place un mur architectural en sélectionnant le type Simple panneau : nous traçons ainsi un panneau prolongé sur la hauteur et la longueur du mur.

Il faut ensuite quadriller ce panneau. Nous utilisons pour cela la fonction Quadrillage du mur rideau, disponible dans l’onglet Architecture, qui propose des :
 - Segments à travers tout le panneau;
 - Segments ne recouvrant que certaines portions du panneau.

Nous pouvons d’abord placer les segments de façon aléatoire sur le panneau, puis en préciser les positions grâce aux cotations.

Enfin, nous pouvons insérer les meneaux sur le quadrillage réalisé grâce à la fonction Meneau.

Plusieurs dispositions nous sont alors proposées :
 - Selon des lignes entières du quadrillage ;
 - Uniquement sur certains segments du quadrillage ;
 - Sur toutes les lignes du quadrillage.
c) **Les fonctions de l’onglet Modifier les plus courantes**

Dans l’onglet Modifier on retrouve de nombreuses fonctions :

- **Déplacer (MV)** : pour déplacer un élément.
 On sélectionne l’objet, on clique sur l’icône Déplacer, et on choisit un point de base pour le déplacement.

- **Copier (CO)** : pour copier un élément en conservant toutes ses propriétés.
 On sélectionne l’objet, on clique sur l’icône Copier, on choisit un point de base de l’élément à copier qui correspondra au même point pour l’élément copié.

- **Copier à l’identique (CS)** : pour copier un élément en conservant ses caractéristiques tout en restant libre de ses formes.
 On sélectionne l’objet, on clique sur l’icône Copier à l’identique et on trace le nouvel objet.

- **Aligner (AL)** : pour placer sur un même axe deux éléments.
 On clique sur l’icône Aligner, on clique sur l’axe d’alignement puis sur l’axe de l’objet qu’on veut aligner.

- **Rotation (RO)** : pour pivoter l’élément sélectionné autour d’un axe.
 On sélectionne l’objet, on clique sur l’icône Rotation et, dans la barre d’options, on clique sur lieu afin de spécifier le point autour duquel tournera l’objet. On trace ensuite deux axes : le premier correspondant à l’axe d’origine, le second à l’axe souhaité. On peut aussi entrer la valeur de l’angle de rotation.

- **Symétrie – Choisir l’axe (MM)** : pour inverser la position d’éléments selon une ligne existante comme axe de symétrie.
 On sélectionne l’objet, on clique sur l’icône Symétrie-Choisir l’axe et on clique sur l’axe.

- **Symétrie – Dessiner l’axe (DM)** : cette fonction est très similaire à la précédente, à ceci près qu’on doit dessiner l’axe de symétrie.

- **Décaler (OF)** : pour déplacer ou copier un élément sur une distance spécifiée, perpendiculairement à sa longueur.
 On clique sur l’icône Décaler, puis dans la barre d’options on spécifie la distance et si on souhaite copier l’élément ou simplement le déplacer. Enfin, on clique sur l’objet source et, selon le côté de l’objet sur lequel on se place, celui-ci sera décalé à droite ou à gauche (eci est indiqué par des pointillés bleu).

- **Scinder l’élément (SL)** : pour couper un élément en un point.
 On sélectionne l’objet, on clique sur l’icône Scinder l’élément, et on clique à l’endroit où on souhaite couper l’objet.
 On peut ainsi scinder un objet en trois et supprimer la portion de mur intermédiaire en cochant la case Supprimer le segment interne dans la barre d’options.
 On dispose également de la fonction Scinder avec un espace qui permet de créer une coupure dans le mur en en spécifiant l’espacement dans le champ Espace entre les joints dans la barre d’options.

- **Ajuster/ Prolonger un seul élément** : pour prolonger ou réduire un élément jusqu’à une limite définie par un autre élément.
 Après avoir cliqué sur l’icône Ajuster/Prolonger un seul élément, on sélectionne d’abord l’élément qui fera office de limite puis celui qu’on veut garder (ajustement) ou prolonger (prolongation).
 On dispose également de la fonction Ajuster/Prolonger plusieurs éléments si on souhaite affecter la modification à plusieurs éléments sans relancer la fonction.

- **Ajuster/prolonger en angle (TR)** : pour ajuster ou prolonger des éléments afin qu’ils forment un coin.
 On clique sur l’icône Ajuster/Prolonger en angle, puis on sélectionne les deux objets concernés par le raccord.

- **Jontion de murs** : pour modifier la jonction entre les murs (onglet, about, droit).
 On clique sur l’icône Jontion de murs, puis on sélectionne le joint souhaité : dans la barre d’options on peut alors choisir le type de joint qu’on veut (onglet, about, droit) et visualiser les différentes possibilités avec les onglets Précédent et Suivant.
 Dans la barre d’options on peut également choisir de nettoyer le joint, ou pas : autrement dit d’assurer une homogénéité des murs, ou de laisser le joint apparent.

- **Attacher (la géométrie)** : cette fonction permet de créer des jonctions propres entre plusieurs éléments hôtes partageant une face (ou de les supprimer avec Détacher la géométrie dans le menu déroulant).
 Après avoir cliqué sur l’onglet et choisi l’action, on sélectionne d’abord l’élément auquel on souhaite attacher la géométrie puis l’élément à attacher.

 Quand on souhaite attacher plusieurs éléments à un même élément, afin d’éviter de relancer la fonction, on peut cocher la case Joints multiples dans la barre d’options : il suffira alors de sélectionner une fois l’élément de référence, puis on cliquera sur tous les éléments à attacher successivement.
d) Les sols

Nous nous intéressons maintenant aux sols, que nous générons grâce à l’onglet Sol (toujours dans Architecture). La petite flèche donne accès à un menu déroulant nous permettant de choisir entre Dalle : architecture et Plancher (le menu propose aussi des sols par face, mais nous les utilisons peu).

Comme pour les murs, une fois la fonction lancée, et avant de tracer notre sol, nous veillons aux éléments suivants :

- **Le type de sol** : dans la fenêtre de propriétés ;
- **Les options de tracé du sol** :
 - Avec ou sans décalage : pour définir un éventuel débord de l’esquisse du sol ;
 - *À partir des limites de la couche principale* : en cochant cette case on précise de dessiner l’esquisse du sol sur les limites de couche principale définies dans le mur (donc en théorie sur le composant porteur).

<table>
<thead>
<tr>
<th>Décalage : 0.0000</th>
<th>A partir des limites de la couche principale</th>
</tr>
</thead>
</table>

On peut ensuite tracer le sol :
- **On définit les lignes de contour du sol** : on sélectionne Lignes de contour, dans l’onglet Modifier, et on utilise les différents outils proposés (l’ensemble du plan apparaît en demi-teinte, et les lignes d’esquisse en couleur):

- **On affecte une pente à notre sol** : on sélectionne Flèche d’inclinaison dans l’onglet Modifier et, à l’aide des outils proposés, on trace une flèche en faisant attention à ce que les extrémités de celle-ci soient en contact avec les lignes d’esquisse de sol. Dans la fenêtre de propriétés on peut ensuite régle les paramètres de cette pente (angle d’inclinaison, décalage,…). Dans ce cas, l’ensemble de la dalle sera affectée d’une pente.

Attention à ne pas oublier de valider à la fin de notre tracé pour quitter l’outil de modélisation.

Si on souhaite par la suite modifier le sol il suffit de le sélectionner. Des onglets contextuels de modification apparaissent alors :

1. Modification des limites de l’esquisse
2. Modification de la forme (pointe de diamant, pente,…)

Copyright© 2017 Tous droits réservés – GRAITEC France
Les outils de « Modification de forme » sont très utiles pour des modifications de sol (pointe de diamant, pente...) qui permettent de conserver une arase inférieure de la dalle plane (pour faciliter les écoulements d’eau d’un balcon par exemple)

Lorsque murs et sols sont créés il faut veiller à ce qu’ils soient bien attachés entre eux. Pour cela, nous sélectionnons les murs, nous cliquons sur l’icône Attacher haut/bas, disponible dans l’onglet Modifier, puis sur le sol (comme souvent dans le logiciel nous raisonnons en sélectionnant d’abord l’élément de référence et ensuite les éléments à modifier).

Remarques : Quelques raccourcis clavier utiles
- Quand on veut sélectionner un élément, il peut arriver qu’on ait des difficultés à s’accrocher dessus. Dans ce cas la touche TAB du clavier nous est d’une aide précieuse : à chaque fois qu’on tape sur celle-ci un nouvel élément est proposé pour la sélection. Il suffit alors de cliquer sur l’élément voulu quand il apparaît.
- Lorsqu’on trace un élément, il existe des raccourcis clavier pour s’accrocher aux objets sur des points précis. Ceux-ci sont constitués de deux lettres : la première est S pour « snap » (termes relatif à l’accrochage objet), et la seconde correspond à l’initiale de l’élément cherché (par exemple C pour centre). Ainsi on a les raccourcis suivants : SC (centres), SE (extrémités), SI (intersections), SM (milieux), ST (tangentes), SP (perpendiculaires), SZ (avec Z pour zéro, afin de fermer une ligne), etc...
- Lors de la création d’une dalle, après la validation de l’esquisse, Revit affiche un message demandant à l’utilisateur si il souhaite que les murs qui atteignent la dalle soit automatiquement attaché à celle-ci. En effet en cliquant oui dans cette fenêtre on obtient le même résultat qu’avec la commande Attacher haut/bas. Cet avertissement peut donc permettre à l’utilisateur de gagner du temps et de ne pas oublier cette étape importante dans la phase de modélisation.

e) Les portes et les fenêtres
Maintenant que les sols et les murs sont modélisés, nous pouvons placer les portes et les fenêtres. En effet les murs sont indispensables car ces deux éléments sont insérés dedans !

1. Les portes
Pour les créer nous utilisons l’onglet Portes (toujours dans Architecture).

Comme pour les murs et les sols nous sélectionnons le type de porte souhaité dans la fenêtre de propriétés. Il est possible que la famille voulu n’apparaisse pas dans le sélecteur de type. Dans ce cas on clique sur l’onglet Charger la famille dans Modifier/Placer Porte et on va la chercher dans la bibliothèque.

Pour insérer la porte on clique sur le mur hôte et il est recommandé de la mettre d’abord de façon aléatoire : on utilisera ensuite la fonction Aligner pour la placer correctement (essayer de la positionner directement risquerait de nous faire perdre en précision).
Les symboles de double flèche permettent de gérer l’orientation de la porte.

Remarque : Angle d’ouverture de porte
Si l’ouverture de la porte a un angle particulier sur le plan, on peut configurer ce dernier dans la rubrique Graphismes de la fenêtre de propriétés de la porte (on décoche la case Angle 2D fixe et on entre la valeur de l’angle souhaité dans Angle ouverture 3D).

2. Les fenêtres
La méthode est très similaire à celle des portes : après avoir cliqué sur l’onglet Fenêtres, dans Architecture, nous veillons à ce que le bon type de fenêtre soit engagé. Sinon nous le modifions dans le sélecteur de type, et au besoin nous chargeons une famille de fenêtres.

Nous insérons ensuite la fenêtre dans le mur de la même façon que pour les portes, et les symboles de double flèche ont aussi une vocation d’orientation.

f) Les fonctions de duplication
Nous avons déjà vu, dans le paragraphe c)III[Partie B], la fonction d’édition Copier. Nous allons maintenant nous intéresser à l’outil Copier dans le Presse-papiers qui permet de copier un ou plusieurs éléments dans la mémoire de Autodesk Revit après les avoir sélectionné. On pourra ainsi les coller dans le dessin ou dans un projet différent.

Différentes fonctions de duplication sont ainsi proposées dans le menu déroulant de l’icône Coller depuis le Presse-papiers :
- **Aligné au même emplacement** : on obtient les deux éléments superposés ;
- **Aligné entre les niveaux** : on précise le niveau sur lequel on veut copier les éléments placés dans le Presse-papiers, et ceux-ci apparaissent bien alignés dans le niveau sélectionné. Ceci est très pratique lorsqu’on a des étages similaires par exemple.

 De la même façon on a la fonction **Aligné sur le niveau choisi** : on pointe alors graphiquement le niveau dans une vue en élévation.

- **Aligné sur la vue actuelle** : cette fonction permet de dupliquer un, ou des, élément(s) sur plusieurs vues en plan d’étage d’un projet sans se soucier du point de base du positionnement (par exemple pour le symbole du nord).

 Pour cela, on se place sur la vue dans laquelle on souhaite copier les éléments mis dans le Presse-papiers et on lance la fonction.

- **Coller depuis le Presse-papiers** : cette fonction est utile pour transférer des éléments entre différents projets.

 Pour l’explication de la commande, prenons deux projets : le projet 1 dans lequel on a modélisé l’élément à copier, et le projet 2 dans lequel on veut insérer cet élément. Après avoir placé l’objet dans le Presse-papiers du projet 1, on ouvre le projet 2 (sans fermer le projet 1) et on lance la fonction Coller depuis le Presse-papiers. Désormais, le type d’objet ainsi inséré appartient au projet 2 et peut être exploité.

g) Les toits
Afin de finir l’enveloppe de notre bâtiment nous mettons en place le dernier élément : le toit. Nous le générions grâce à l’onglet Toit (dans l’onglet Architecture). La petite flèche donne accès à un menu déroulant nous permettant de choisir entre Toit par tracé ou Toit par extrusion (le menu propose aussi des Toit par face, mais nous les utilisons peu).

1. Les toits par tracé
Leur mise en place est très similaire à celle des sols. En effet, une fois la fonction lancée, et avant de tracer notre toit, nous veillons aux éléments suivants :
- **Le type de toit** : dans la fenêtre de propriétés ;
- **Les options de tracé du sol** :
 - Avec ou sans débord : pour définir un éventuel débord de l’esquisse du sol ;
 - **A partir des limites de la couche principale** : en cochant cette case on précise de dessiner l’esquisse du sol sur les limites de couche principale définies dans le mur (donc en théorie sur le composant porteur).

Inclinaison	Débord du toit	1.0000	A partir des limites de la couche principale

Puis, de la même façon que pour les sols, on dessine les lignes de contour et une pente éventuelle avec les outils disponibles dans Lignes de contour et Flèche d’inclinaison (respectivement) dans l’onglet Modifier.
2. **Les toits par extrusion**

Certains toits ont des formes particulières et ne peuvent pas être simplement modélisés par une dalle affectée d’une pente. La création de toit par extrusion nous permet de les réaliser.

Pour cela il faut au préalable avoir mis en place le plan dans lequel sera tracé le toit : c’est le plan de référence demandé par le logiciel lorsque nous lançons la fonction *Toit par extrusion*.

Si le plan de référence n’existe pas nous le créons : dans l’onglet *Architecture*, tout à droite, nous trouvons l’outil *Plan de référence*. Nous cliquons dessus, et dans la vue souhaitée nous traçons l’axe définissant le plan, qui apparaît en pointillés verts. Dans les propriétés du plan nous pouvons lui attribuer un nom afin de le retrouver facilement par la suite.

Après avoir sélectionné le plan de référence, si nous ne sommes pas dans une vue permettant de tracer le toit, le logiciel ouvre la boîte de dialogue *Aller à la vue* et nous propose d’en choisir une. Nous optons pour une vue en élévation, où tous les détails des niveaux sont renseignés.

Le logiciel nous demande ensuite à quel niveau on souhaite tracer le toit, et si celui-ci comporte un éventuel décalage.

Nous pouvons enfin tracer le toit à l’aide des différents outils proposés :
Attention à ne pas oublier de valider à la fin de notre tracé pour quitter l'outil de modélisation.

Il faut ensuite veiller à attacher les murs au toit : on procède de la même façon que pour les sols, avec l'outil Attacher haut/bas après avoir sélectionné les murs.

Vue 3D avant que les murs soient attachés au toit.

Vue 3D après que les murs aient été attachés au toit.

h) Les escaliers

Toute l’enveloppe de notre bâtiment est désormais créée : nous pouvons entrer plus dans les détails quant à son aménagement intérieur. Nous commençons par les escaliers grâce à la fonction Escalier (dans l’onglet Architecture), qui propose deux méthodes de modélisation dans le menu déroulant : Escalier par composant ou Escalier par esquisse.

1. **Escalier par composant**

 Cette méthode va générer l’élément à partir d’une bibliothèque d’escaliers standards.

 Pour créer ce type d’escalier nous avons besoin de plusieurs données :

 - **Dans l’onglet Modifier,** quand on lance la fonction Escalier par composant :
 - Le type de volée ;
 - La forme du palier.

 - **Dans la barre d’options** :
 - La ligne de justification du tracé (par exemple, en choisissant volée gauche, on indique que la ligne de justification sera à gauche de la volée) ;
 - Un éventuel décalage ;
 - La largeur de la volée ;
 - La présence d’un palier automatique ou pas.

 - **Dans la fenêtre de propriétés** :
 - Les contraintes inférieure et supérieure, affectées de décalages éventuels ;
 - La copie éventuelle de l’escalier sur plusieurs étages en cochant la case Niveau supérieur multiétage (attention, ceci nécessite des hauteurs d’étage constantes) ;
 - Le nombre de contremarches ;
 - La profondeur du giron.

 ![Image de l'escalier par composant](image)

 Exemple de l'escalier par composant
Une fois que nous avons entré et vérifié toutes ces informations, nous pouvons tracer l’escalier comme nous le ferions pour un mur : avec un point de départ et un point d’arrivée.

Lorsque l’escalier est tracé, si nous souhaitons inverser son sens, nous cliquons sur l’icône Inverser dans l’onglet Modifier.

2. Escalier par esquisse
Cette méthode permet de créer des escaliers de formes plus particulières.
Elle est constituée de deux étapes principales :

- La mise en place des limites :
 - Dans la barre d’options, on vérifie les propriétés de décalage et on coche la case Chaîner (afin d’éviter de relancer l’outil ligne quand on trace les limites) ;
 - Le tracé des limites : elles correspondent au cadre de l’escalier (attention, elles ne forment pas une ligne fermée).

- La mise en place des contremarches :
 - Dans la barre d’options, on vérifie également les propriétés de décalage et la case Chaîner ;
 - Le tracé des contremarches.

Avant de valider l’escalier on vérifiera la fenêtre de propriétés : contraintes inférieure et supérieure, décalages éventuels, largeur de la volée, nombre de contremarches, profondeur du giron.

Remarque : Comment gérer les garde-corps ?
Pour les deux méthodes, le logiciel affecte automatiquement un garde-corps à l’escalier créé. Pour le désactiver, ou en gérer la distribution, nous cliquons sur l’icône Garde-corps dans Modifier.

i) Les poteaux
La modélisation des poteaux se fait avec l’outil Poteau, dans l’onglet Architecture, qui en propose deux sortes dans le menu déroulant : Poteau porteur ou Poteau architectural.

Une fois la fonction lancée, et avant de placer le poteau, nous veillons aux éléments suivants :

- Le positionnement du poteau. Dans l’onglet Modifier on peut choisir de modéliser un poteau vertical ou un poteau incliné :
 - Poteau vertical : dans la barre d’options on définit le poteau en hauteur (pas en profondeur) et la contrainte supérieure ;
 - Poteau incliné : dans la barre d’options on définit la vue sur laquelle sera fait le clic correspondant à l’origine du poteau, et la vue sur laquelle sera effectué le clic relatif à l’extrémité du poteau.

- Le type de poteau dans le sélecteur de type (quitte à charger une famille avec l’outil Charger la famille dans l’onglet Modifier si le poteau souhaité n’est pas proposé) ;
 - On peut ensuite placer le poteau sur la vue.

j) Les composants
Le menu déroulant de l’outil composant, dans l’onglet Architecture, nous propose deux méthodes de modélisation : Placer un composant ou Créer in situ.
1. Placer un composant
 Avec cette méthode on va modéliser les composants à partir de familles systèmes ou externes, déjà placées dans le sélecteur de type ou chargées avec l’outil Chargé la famille dans l’onglet Modifier.
 Il suffira ensuite de placer le composant sur notre modèle par un clic gauche : de préférence d’abord grossièrement, puis plus précisément avec l’outil Aligner.

2. Créer in situ
 Lorsque le composant à placer est une forme géométrique assez simple à modéliser, et peu réutilisable par la suite, on utilise cette méthode (en revanche si on souhaite garder le composant créé en vue d’une utilisation ultérieure, dans le projet en cours ou un autre, il est recommandé de générer une famille).

 Une fois la fonction lancée, le logiciel nous demande tout d’abord quelle catégorie de famille sera concernée par l’élément qu’on crée, puis le nom qu’on veut donner à ce dernier :

 ![Image de la fonction de création in situ]

 Le ruban prend alors la forme suivante :

 ![Image du ruban après la création in situ]

 On peut ainsi choisir entre deux types de formes :
 - Les formes pleines : on crée un solide grâce aux fonctions suivantes :
 - Extrusion
 - Raccordement
 - Révolution
 - Extrusion par chemin
 - Raccordement par chemin

 On emploie surtout la fonction Extrusion, assez simple d’utilisation : après avoir cliqué sur l’icône, on a accès à une palette d’outils dans l’onglet Modifier nous permettant de créer la forme en 2D. On valide une première fois avec la virgule, puis on règle numériquement la hauteur de notre extrusion dans la fenêtre de propriétés (au besoin on peut se placer dans une autre vue pour la régler graphiquement avec les petits triangles bleus). On valide une seconde fois : la forme pleine est créée.

 ![Image de la fonction Extrusion]
 ![Image de la fonction de création in situ après la création de la forme pleine]
Les formes vides : on crée des formes négatives qui sont déduites des géométries pleines. On utilise la fonction Formes vides qui propose un menu déroulant dans lequel on peut choisir la méthode de création de la forme :

Nous pouvons aussi utiliser la méthode de l’extrusion : on trace notre forme 2D, on valide une première fois, puis on règle la profondeur de l’extrusion. Avant de valider pour la deuxième fois on doit indiquer au logiciel l’élément que coupe notre composant : on utiliser pour cela la fonction Couper la géométrie (autrement le logiciel nous renvoie un message d’erreur).
Remarque : lorsqu’on crée l’esquisse 2D, la forme apparaît en trait rose pour les deux types de forme. En revanche, après la première validation, les contours des formes vides apparaissent en orange et ceux des formes pleines en bleu.

k) Les plafonds

Afin de modéliser les plafonds, nous utilisons la fonction **Plafond** dans l’onglet **Architecture**, et on vérifie qu’on travaille avec le plafond souhaité dans le sélecteur de type.

Deux méthodes nous sont alors proposées :

- **Plafond automatique** : le plafond est tracé grâce au mode automatique qui détecte le contour en reconnaissant les murs du périmètre ;
- **Esquisse du plafond** : le contour du plafond est tracé manuellement à l’aide des outils proposés dans l’onglet contextuel **Modifier**. On peut également y définir une flèche d’inclinaison (suivant la même méthode que celle vue précédemment pour les sols).

On peut modifier des plafonds après les avoir créés en les sélectionnant et en cliquant sur l’icône **Modifier la limite** (qui apparaît dans l’onglet contextuel **Modifier**).

l) Les pièces

1. ** Création de pièces**

 Pour créer des pièces, on utilise la fonction **Pièce**, disponible dans l’onglet **Architecture** : le logiciel fait une détection des murs du contour, s’ils existent, et en déduit des informations de la pièce (périmètre, surface, ...).

 Il suffit alors de se positionner sur chaque local de notre bâtiment et une croix bleue apparaît : en faisant un clic gauche on valide la création de la pièce. Puis, en sélectionnant cette croix on a accès aux propriétés de la pièce (surface, périmètre, etc...), et on peut définir son nom.

2. ** Limite et séparateur de pièces**

 Ces deux notions interviennent dans le détourage des pièces :
 - **Limite de pièce** : pour demander au logiciel de ne pas tenir compte d’un mur comme limite. Pour cela, on clique sur le mur, et dans les propriétés de ce dernier on décoche **Limite de pièce**.

 - **Séparateur de pièces** : on utilise cet outil pour tracer une frontière 2D quand nous n’avons pas de mur pour délimiter la pièce.
Pour l’utiliser, on clique sur l’icône et on trace notre ligne de séparation (elle apparaît en pointillés bleu turquoise). Cette manipulation peut être réalisée après la réalisation d’une pièce (mais il ne faudra pas oublier de placer la deuxième pièce ainsi créée).

m) Les rampes d’accès

Et, dans la fenêtre de propriétés, on peut définir l’évolution de la rampe en altimétrie ainsi que sa largeur.

III] LE MODE COLLABORATIF

a) Présentation du travail en réseau

Il existe deux types de fichiers dans Autodesk Revit :

- **Les fichiers autonomes** : utilisés couramment quand nous travaillons sur le logiciel ;
- **Les fichiers réseau** : un fichier central est lié à différents fichiers réseau qui peuvent être consultés et/ou travaillés simultanément par plusieurs personnes.

Comme le logiciel travaille en « monofichier » (du fait des restrictions Windows), on ne peut pas travailler à plusieurs sur un même fichier. C’est pourquoi nous créons un fichier central, et des copies en local : les utilisateurs travaillent sur leur copie en local, puis envoient au fichier central par synchronisation. Les autres utilisateurs peuvent ensuite récupérer le travail chargé dans le fichier central en synchronisant à leur tour.

En général, le nom du fichier central se distingue des autres assez facilement :
On lui attribue le suffixe CEN quand on le nomme à sa création ;
Lorsqu’on veut l’ouvrir dans le logiciel, la case Détacher du fichier central peut être cochée (sinon elle est grisée).

Les fichiers réseau sont convertibles en fichiers autonomes et vice versa.

b) **Mise en place du mode collaboratif**

Pour travailler en mode collaboratif il y a deux grandes étapes à réaliser : créer le fichier central, et créer les fichiers locaux.

1. **Création du fichier central**

Les étapes de création du fichier central, réalisables par une seule personne, sont les suivantes :

- **Enregistrement du fichier dans un répertoire partagé** : dans le menu de l’application, on clique sur Enregistrer sous et on se place dans Emplacement réseau (de façon à ce que tous les utilisateurs puissent accéder au fichier ainsi créé). Comme nous l’avons vu, il est préférable de nommer ce fichier avec pour suffixe CEN_V15 (CEN pour fichier central, V15 pour la version de Revit utilisée).

- **Activer l’option sous-projet afin de transformer un fichier autonome en fichier réseau** : dans l’onglet Collaborer, on clique sur l’icône Sous-projet et on valide le message du logiciel concernant le partage du projet. Ce message nous indique que les quadrillages et les niveaux seront conservés ensemble à part (comme ce sont des éléments de référence), et que tous les autres éléments appartiendront désormais au sous-projet 1. Nous verrons par la suite comment répartir ces éléments dans différents sous-projets.

- **Enregistrer pour confirmer la transformation** : il suffit de cliquer sur la disquette, et de valider le message que renvoie le logiciel (qui nous demande si on souhaite bien faire de ce fichier le fichier central).

- **Libérer les droits afin que les autres utilisateurs puissent travailler sur la maquette** : dans l’onglet Collaborer, on clique sur l’icône Abandonner les données en ma possession. Désormais, si on ouvre la boîte de dialogue des sous-projets, avec l’outil Sous-projets dans l’onglet Collaborer, on constate que la colonne Propriétaire a été décochée : tous les utilisateurs ont donc bien accès à la maquette.

2. **Fermeture du fichier**, grâce à l’icône dans le menu de l’application.

Remarque : Peut-on convertir un fichier réseau en fichier autonome ?

Nous avons ici vu comment convertir un fichier autonome en fichier réseau. Mais le contraire est également possible ! Pour cela, il faut ouvrir le fichier depuis le logiciel et, en bas de la boîte de dialogue, décocher la case Détacher du fichier central.
2. **Création des fichiers locaux**

Avant toute chose, il faut vérifier que deux utilisateurs n’ont pas le même nom ! Pour cela nous allons dans l’onglet *Options* du menu de l’application et, dans la rubrique *Propriétés générales* nous vérifions le nom.

Dans cette boîte de dialogue, nous vérifions également le répertoire d’emplacement des fichiers locaux (autrement dit où nos fichiers locaux seront enregistrés) dans la rubrique *Emplacements fichiers*.

Nous pouvons maintenant créer les fichiers locaux : cette fois-ci c’est à chaque utilisateur de créer son propre fichier. Pour ce faire, nous ouvrons le fichier central depuis le logiciel Revit, et nous vérifions bien que la case *Créer un fichier local* est cochée.

Puis les utilisateurs testent la synchronisation du mode collaboratif ainsi mis en place avec l’icône *Synchroniser maintenant*, disponible dans la barre d’outils d’accès rapide. Il est préférable que les utilisateurs fassent ce test les uns après les autres afin d’éviter tout bug.

c) **Utilisation du mode collaboratif**

1. **A chaque utilisateur sa vue 3D**

Dans la pratique, en mode collaboratif, il est recommandé que chaque utilisateur crée sa propre vue 3D sur laquelle il travaillera. Ceci permettra d’éviter les partages désagréables de masques, coupes, etc...
Pour ce faire, dans la fenêtre de l’arborescence, nous faisons un clic droit sur la vue (3D) et nous cliquons sur Dupliquer la vue (dupliquer avec les détails signifie qu’il y aura conservation du fond de plan, donc pour une vue 3D on peut simplement dupliquer).

2. Création des sous-projets

Un fichier Revit autonome est constitué d’une multitude d’éléments qui forment le modèle. Dans un fichier réseau, on peut choisir de répartir tous ces éléments selon des sous-projets qu’on affectera aux différents utilisateurs.

Pour créer un sous-projet nous suivons les étapes suivantes :

- **Affectation du bâtiment au sous-projet créé** : On sélectionne l’ensemble des éléments constituant le bâtiment concerné (par un cadre débutant en bas à droite) et, dans la fenêtre de propriétés, on attribue cet ensemble à notre sous-projet.

On procède ainsi pour les différents sous-projets à mettre en place.
3. **Exploitation des sous-projets**

Comme nous l’avons vu, la gestion du travail en réseau se fait essentiellement dans l’onglet **Collaborer** avec l’icône **Sous-projet** qui, lorsqu’on clique dessus, ouvre une boîte de dialogue regroupant tous les sous-projets et leurs propriétés (propriétaires, visibilité, etc.).

Dans la barre d’état, quand on est en mode collaboratif, on peut visualiser :
- **Le sous-projet actif** : à côté de l’icône **Sous-projet** on trouve un menu déroulant qui liste tous les sous-projets créés. Pour en rendre un actif, et le visualiser à l’écran, il suffit de cliquer dessus.
- **Les requêtes en cours** : quand un utilisateur souhaite modifier un élément sur une structure dont il n’est pas propriétaire il envoie une requête au propriétaire en question. Celui-ci peut alors décider de lui répondre par l’affirmative ou pas.
- **la case Modifiable uniquement** : elle est cochée quand l’utilisateur souhaite bloquer toute sélection sur une autre structure que la sienne (pour éviter les risques d’erreur et donc les requêtes inutiles auprès de ses collègues).

Dans la barre de contrôle de l’affichage, nous notons l’apparition d’un nouvel icône qui permet de gérer les paramètres d’affichage du partage de projet. Quand nous cliquons dessus, nous pouvons choisir d’afficher le projet de différentes façons :
- **Propriétaires** : les couleurs sont différentes selon les propriétaires ;
- **Etat de l’extraction** : trois couleurs se distinguent dans ce cas. Une première pour les sous-projets dont nous sommes propriétaires, une seconde pour les sous-projets des autres utilisateurs et une troisième pour ceux qui n’appartiennent à personne ;
- **Sous-projets** : à chaque sous-projet est attribué une couleur ;
- **Mises à jour des modèles** : tout élément supprimé ou non mis à jour est affiché avec une couleur particulière ;

L’icône permet également de configurer les couleurs des affichages avec la fonction **Paramètres d’affichage du partage de projet.** La boîte de dialogue est alors scindée en quatre onglets, un pour chacun des modes vus ci-dessus.

IV] PERSONNALISATION DU MODÈLE

a) **Création de paramètres**

Nous pouvons créer des paramètres personnalisés, qui s’affichent dans la fenêtre des propriétés (ou dans la boîte de dialogue **Propriétés du type**), pour tout élément ou catégorie de notre projet.

1. **Paramètres du projet**

Ce sont des paramètres personnalisés propres à un seul projet.

Pour les créer nous utilisons la fonction **Paramètres du projet**, disponible dans l’onglet **Gérer**. Après avoir nommé le paramètre nous précisons les points suivants dans la boîte de dialogue **Paramètres du projet** :
• Type de paramètre : nous cochons Paramètre du projet ;
• Données de paramètre : nous précisons le nom du paramètre, sa discipline, son type, la rubrique de la fenêtre de propriétés dans laquelle il apparaîtra, et s’il s’agit d’un paramètre de type ou d’occurrence ;
• Catégories : nous cochons la catégorie d’éléments à laquelle sera affecté le paramètre créé.

2. Paramètres partagés

Ce sont des paramètres qui peuvent être partagés avec différents projets ou familles car ils sont stockés dans un fichier .txt.

Pour les générer nous utilisons la fonction Paramètres partagés, disponible dans l’onglet Gérer, puis voici les étapes à suivre :

• Création du fichier de paramètres partagés : un message d’avertissement apparaît pour nous préciser qu’un tel fichier n’existe pas. Lorsqu’on ferme ce message la boîte de dialogue Modification des paramètres partagés s’ouvre et nous créons le dit fichier.

• Création du groupe de paramètres partagés : maintenant que notre fichier est mis en place, nous le décomposons en groupes. Nous commençons par créer un premier groupe de paramètres partagés :
** Création des paramètres partagés :** au sein du groupe de notre fichier nous générerons les paramètres souhaités. Pour cela, nous cliquons sur *Nouveau dans Paramètres* et nous entrons le nom, la discipline et le type du paramètre.

- **Ajout du paramètre partagé au projet :** nous devons maintenant insérer notre paramètre dans le projet. Pour cela nous lançons la fonction *Paramètres du projet* (disponible dans l’onglet *Gérer*), et en cliquant sur *Ajouter* nous ouvrons la boîte de dialogue *Paramètres du projet*. Dans cette dernière nous allons chercher le paramètre, puis nous spécifions sa catégorie et nous précisons s’il s’agit d’un paramètre de type ou d’occurrence.

b) Création de familles

La création des familles demande beaucoup de rigueur dans leur approche. Il est fortement recommandé de réfléchir sur un brouillon avant de commencer, et de se poser les questions suivantes :

- Notre famille nécessite-t-elle un hôte ?
- Quel sera son point d’insertion et ses plans de construction ?
- Quels sont les paramètres nécessaires, et seront-ils exploités par d’autres familles ?
- Existe-t-il une famille similaire sur laquelle nous pourrions nous baser ?
- Et, pour aller plus loin, quel niveau de détail souhaitons nous pour la famille (autrement dit, doit-elle être visible dans toutes les vues ?)

Une fois que nous sommes fixés sur tous ces points nous pouvons commencer la création de la famille. Les étapes sont alors les suivantes :

- **Choix du gabarit ;** il est essentiel car si nous nous trompons nous n’arriverons pas à créer notre famille. Pour le déterminer, nous allons dans le menu de l’application où nous cliquons sur *Nouveau* et sélectionnons *Famille*. Nous optons alors pour le gabarit adapté.
Remarque : beaucoup de gabarits nous sont proposés, mais ils ne sont pas tous intéressants à utiliser. En effet, le logiciel se développant, des gabarits généraux ont vu le jour remplaçant ainsi certains gabarits plus particuliers (mais ces derniers ont été conservés pour les utilisateurs habitués à les manier). Le tableau ci-dessous rassemble les gabarits les plus fréquemment employés :

<table>
<thead>
<tr>
<th>Famille créée</th>
<th>Gabarit utilisé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Famille 3D quelconque</td>
<td>Modèle générique métrique</td>
</tr>
<tr>
<td>Semelles isolées ou pieux</td>
<td>Semelle de fondation métrique</td>
</tr>
<tr>
<td>Poteaux structure</td>
<td>Poteau porteur métrique</td>
</tr>
<tr>
<td>Volume conceptuel</td>
<td>Volume métrique</td>
</tr>
<tr>
<td>Composant de détail</td>
<td>Eléments de détail métrique</td>
</tr>
<tr>
<td>Annotation</td>
<td>Annotation générique métrique</td>
</tr>
<tr>
<td>Profil</td>
<td>Profil métrique</td>
</tr>
<tr>
<td>Cartouche</td>
<td>Nouvelle taille (métrique)</td>
</tr>
</tbody>
</table>

- **Mise en place des plans de référence** : ce sont en fait des plans de construction qui permettront de tracer notre famille. Nous matérialisons ainsi chaque nœud de la famille par l’intersection de plans de référence. Pour créer ces derniers nous allons dans l’onglet Créer et nous cliquons sur la fonction Plan de référence.

- **Tracé de la géométrie** :
 - Pour les objets 3D : nous lançons une des fonctions du groupe de commandes Formes disponibles dans l’onglet Créer et, dans la vue Niveau de référence, nous traçons la géométrie 2D grâce aux outils de dessin proposés dans l’onglet Modifier. Nous validons, puis nous nous plaçons sur une vue d’élévation et nous gérons la hauteur de l’élément.
 - Il est recommandé de tracer grossièrement l’élément dans un premier temps, puis d’utiliser la fonction Aligner pour le placer correctement sur les plans de référence.
o Pour les objets 2D : nous lançons une des fonctions du groupe de commandes Détail afin de dessiner l’élément (celles-ci varient selon le gabarit choisi).

- **Mise en place des contraintes** : pour gérer la déformation de l’objet nous allons verrouiller les lignes constituant l’élément tracé en cliquant sur le petit cadenas lié à chacune d’entre elles. Les éléments ainsi cadenassés seront désormais fixes.

- **Introduction des variables** : ceci afin de contrôler la géométrie des esquisses et donc celle du volume. Nous allons créer des cotections (grâce aux fonctions disponibles dans l’onglet Annoter), auxquelles nous associerons des paramètres à l’aide de la boîte de dialogue Propriété des paramètres qui s’ouvre lorsque nous cliquons sur « Ajouter un paramètre » dans le champ Libellé de la barre d’options (pour plus de précisions sur cette fenêtre, cf paragraphe a)IV]PartieC]).

- **Enregistrement** : afin de conserver la famille pour des utilisations ultérieures, nous enregistrons celle-ci (en utilisant la disquette dans la barre d’outils d’accès rapide, ou par le biais de la fonction Enregistrer dans le menu de l’application).

- **Chargement dans le projet** : une fois que la conception de la famille est terminée nous pouvons la charger dans le projet. Nous lançons la fonction Charger dans le projet, disponible dans tous les onglets.

 Remarque : si nous voulons modifier la famille par la suite ce sera toujours possible. Il suffira de double cliquer sur l’élément, afin d’ouvrir le fichier de conception de la famille, et de réaliser les modifications. Puis nous cliquerez sur l’icône Charger dans le projet et, dans le message d’avertissement du logiciel qui s’affichera, nous opterons pour l’option Remplacer la valeur existante et ses valeurs de paramètres.
c) Création de gabarit

1. Création d’un gabarit de projet

Pour créer un gabarit de vue à partir d’un projet en cours nous cliquons sur Enregistrer sous, dans le menu de l’application, et nous sélectionnons Gabarit.

Mais au préalable il faut nettoyer le projet afin de pouvoir travailler ultérieurement sur le gabarit créé :

- **Dans les vues 3D** : on supprime tous les éléments ;
- **Dans l’arborescence** : on supprime toutes les vues inutiles ;

- **Dans les vues en plan** :
 - on supprime tous les éléments restants (coupes, axes, côtes,...) ;
 - on décadre les vues (autrement dit on décoche, dans la fenêtre de propriétés, la case cadrer la vue et on met Aucune dans le champ Zone de définition) ;

- **Dans la boîte de dialogue Gestion des liens**, disponible avec l’icône du même nom dans l’onglet Gérer, on supprime tous les liens qu’on a pu mettre en place au cours du projet ;

- **Concernant les coordonnées** : c’est un point que nous n’avons pas abordé (et que nous verrons plus en détails dans la paragraphe e)IVPartieB)), mais il est possible d’implanter un projet dans Revit. Si tel a été le cas, il faut se remettre dans le référentiel du projet (et non pas le référentiel topographique). Nous nous plaçons dans une vue en élévation et, dans l’onglet Gérer, on clique sur l’outil Spécifier les coordonnées d’un point, disponible dans le menu déroulant de l’icône Coordonnées. Nous cliquons ensuite sur le niveau du rez-de-chaussée afin d’y entrer la valeur d’élévation 0.00m.
• **Vue de démarrage** : il est recommandé de configurer la vue de démarrage afin d’éviter d’ouvrir le projet sur une vue 3D (qui risquerait de ralentir le lancement du logiciel).

Pour la configurer nous cliquons sur l’outil *Vue de départ* dans l’onglet *Gérer*, et nous sélectionnons la vue souhaitée.

2. **Ajout du gabarit aux favoris**

Pour que le gabarit apparaîsse dans les favoris, autrement dit sur la page de démarrage du logiciel, nous allons dans la rubrique *Emplacements fichiers* disponible dans le menu de l’application avec l’onglet *Options*.

- **d) Style de plumes**

En ce qui concerne les lignes (intégrées dans les objets ou exploitées dans les lignes 2D), le logiciel fonctionne selon des plumes auxquelles sont attribuées des épaisseurs. Toute création, ou modification, de plumes induit les trois fonctions suivantes, disponibles dans le menu déroulant de *Paramètres supplémentaires* dans l’onglet *Gérer* :

- **Épaisseur des lignes** : c’est dans cette boîte de dialogue que nous ajoutons éventuellement des plumes ou que nous en modifions les épaisseurs selon les différentes échelles. Il est fortement recommandé de ne pas utiliser la plume n°1 car elle est réservée aux hachures !

```plaintext
Pour monter le gabarit dans la liste
Pour descendre le gabarit dans la liste
Pour ajouter le gabarit à la liste
Pour supprimer le gabarit de la liste
```
• **Motifs de lignes** : cette fonction permet de modifier et/ou d’ajouter des motifs à l’aide de tirets, de points ou d’espaces séparés d’une certaine distance ;

• **Styles de lignes** : cette boîte de dialogue regroupe tous les types de lignes affectées aux différents éléments. Nous pouvons y modifier leur épaisseur, leur motif et leur couleur.
e) **Implantation du projet en coordonnées**

1. **Présentation du problème**

La vue en plan site (ou plan masse) est une vue qui existe par défaut dans le logiciel et qui correspond au plan masse de notre projet. Nous distinguons au centre un symbole assez particulier qui correspond en fait à la superposition de deux symboles : celui du zéro du projet et celui du zéro Lambert (topographique). En implantant notre projet nous allons donc distinguer ces deux origines et leur repère associé. Ainsi, six composantes seront à préciser :

- les composantes verticales et horizontales des deux repères ;
- le NGF (pour l’altimétrie) ;
- l’orientation du nord.

Afin de clarifier les différences entre ces entités, on peut se référer au schéma suivant :
Il est important de préciser que ces cinq points sont liés entre eux, le déplacement de l’un entraîne la plupart du temps le déplacement des autres points. Par ailleurs, une des notions fondamentales à retenir est la définition du point O, origine du système de coordonnées de Revit. En effet, les coordonnées des autres points Topographique et point de base du projet sont définies relativement au point O qui lui est invisible pour l’utilisateur.

Le point topographique matérialise la borne secondaire du système de coordonnées de topographie, il a une valeur de coordonnées relative depuis le point de Topographie Principale (N/S = 0, E/O = 0, Elév = 0)

Le point de base du projet matérialise un point de base simplifiant l’utilisation du système de coordonnées interne au projet. Il sert de référence dans le fichier de l’utilisateur.

Lors du déplacement de ces points, l’utilisateur doit faire très attention au symbole du trombone représentant le verrouillage du point par rapport aux autres :

Le fait de déplacer le point topographique tromboné déplace en même temps le point d’origine du système topographique (T).

De même, le fait de déplacer le point de base du projet tromboné agit en même temps sur l’ensemble des éléments présents dans le fichier Revit.

Par ailleurs, le fait de déplacer le point topographique ou le point de base de projet quand ils sont détrombonés n’influe pas sur la position des points d’origine des système de coordonnées topographiques (T) et du projet (O).

2. **Implantation du projet**

Cette manipulation se réalise en sept étapes :

- **La liaison CAO** : nous insérons le fichier du géomètre dans la vue en plan site. Pour cela nous utilisons la fonction **Lier CAO** dans l’onglet **Insérer**. Dans la boîte de dialogue nous choisissons un positionnement **Automatique – Centre à centre** et le mètre pour unité.

 Remarque : nous configurons la liaison ainsi car les géomètres travaillent souvent en mètres, avec le Nord pour direction de l’axe Y et en SCG sous Autocad (les fichiers sont donc loin de l’origine).

- **Définition de l’orientation du projet** : le fichier lié n’est pas correctement placé. Nous procédons donc à des rotations pour bien le positionner (ne pas oublier d’activer l’icône de sélection des liens situé à droite dans la barre d’état).

- **Définition du zéro topographique** : le logiciel va lire les informations du SCG Autocad lié pour le mettre en place. Nous lançons la fonction **Importer les coordonnées**, disponible dans le menu déroulant de l’icône **Coordonnées** dans l’onglet **Gérer**. Il nous suffit ensuite de cliquer sur le fichier DWG lié. Nous constatons alors que les deux origines apparaissent à l’écran : le zéro projet et le zéro topographique que nous venons de créer.

Remarque : en fonction de l’éloignement des deux origines le zoom sur notre projet peut devenir long et compliqué. Il est donc plus confortable de masquer le zéro topographique dans la boîte de dialogue **Remplacements visibilité/graphismes** (nous le trouvons dans la ligne **Point de topographie** issue de la rubrique **Site**).

• Verrouillage du fichier lié : après avoir sélectionné le dit fichier nous lançons la fonction Verrouiller disponible dans l’onglet Modifier.

• Définition du NGF : nous allons indiquer l’altimétrie d’un élément connu, et ainsi nous connaîtrons l’élévation de tous les éléments du bâtiment. Nous utilisons la fonction Spécifier les coordonnées du point disponible dans le menu déroulant de l’icône Coordonnées (dans l’onglet Gérer). Puis, dans une vue en élévation, nous cliquons sur une des lignes de niveaux et nous entrons sa valeur altimétrique dans la boîte de dialogue qui s’ouvre : toutes les autres lignes de niveau sont alors définies par rapport à celle-ci.
Remarque : pour visualiser les lignes de niveaux dans le repère topographique nous devons cliquer sur l’une d’entre elles et, dans les Propriétés du type, sélectionner la valeur Point de topographie dans la rubrique Base de l’élévation.

• Définition de l’emplacement du zéro projet : ceci est vivement recommandé afin de localiser l’origine du projet à un endroit précis. Il suffit d’utiliser la commande Déplacer.
PARTIE C] : RENDU SOUS REVIT

I] DOCUMENTATION DU PROJET

a) Vue en perspective

Pour construire une vue en perspective on utilise l’outil Caméra qu’on trouve dans le menu déroulant de l’icône Vue 3D par défaut, disponible dans la barre d’outils d’accès rapide.

On fixe, dans la barre d’options, le niveau de la camera (dans le champ A partir de) ainsi que son altitude (dans le champ Décalage).

On doit ensuite placer deux points sur notre vue 3D : le point de base de la caméra, d’où fusent les rayons, et le point cible, qui permet de gérer l’étendue de la vue.

b) Vue de légende

Les vues de légende permettent de répertorier les symboles du modèle, les symboles d’annotation, les symboles des matériaux, etc…

Pour créer une vue de légende on utilise la fonction Nouvelle Légende, située dans le menu déroulant de l’icône Légendes (dans l’onglet Vue). Une boîte de dialogue nous demande alors le nom de cette vue, et l’échelle qu’on souhaite lui attribuer.

Les outils utilisés pour l’ajout des éléments dans la vue créée varient selon l’élément inséré. On a :

- Pour des composants : l’outil Composant de légende, disponible dans le menu déroulant de l’icône Composant (dans l’onglet Annoter).

On précise alors, dans la barre d’options, le composant à intégrer, le type de vue concernée, et la longueur de l’hôte dans lequel il s’inscrit.

- Pour des symboles : l’outil Symbole dans l’onglet Annoter.

On choisit alors, dans le sélecteur de type, l’élément à insérer.

- Pour des styles de lignes : l’outil Ligne de détail, dans l’onglet Annoter.

Dans ce cas aussi on fait notre choix dans le sélecteur de type.

c) Vues dépendantes

Les vues dépendantes sont des copies d’une vue principale qui en héritent les propriétés de vue et les éléments spécifiques. Elles peuvent se révéler utiles lorsqu’on veut décomposer une vue générale en plusieurs parties.

Pour créer une vue dépendante on utilise l’outil Dupliquer en tant que vue dépendante, qu’on trouve dans le menu déroulant de l’icône Dupliquer la vue, dans l’onglet Vue (ou par un clic droit sur la vue principale choisie dans l’arborescence).

Afin de bien visualiser les différents endroits où la vue est scindée, on peut recourir à des Lignes de correspondance (outil disponible dans l’onglet Vue).

Pour identifier chaque vue dépendante sur la vue principale on utilise l’outil Référence de vue, disponible dans l’onglet Annoter.

Nous spécifions alors, dans l’onglet Modifier, le type de vue concernée (on conserve Vues associées), et la vue cible qui sera attachée à cette référence de vue dans le champ Vue cible.

Nous posons ensuite la référence de vue, avec la souris, du côté de la ligne de correspondance concernée : désormais le logiciel identifiera le numéro de la vue et la feuille de papier sur laquelle nous pourrons la retrouver.

Remarque : si nous souhaitons convertir une vue dépendante en vue indépendante il suffit d’aller dans la fenêtre de l’arborescence et, par un clic droit sur la vue concernée, de lancer la fonction Convertir en vue indépendante.

d) Vues de nomenclature

Nous avons déjà vu comment exploiter des vues de nomenclature. Nous allons maintenant nous intéresser à leur mise en place.

Pour créer une vue de nomenclature nous utilisons l’outil Nomenclature/Quantités, disponible dans le menu déroulant de l’icône Nomenclatures, dans l’onglet Vue (ou par un clic droit sur la catégorie Nomenclatures/Quantités dans la fenêtre de l’arborescence).

Une boîte de dialogue s’affiche alors, nous permettant de choisir la catégorie de la nomenclature, son nom et le type de table :
Une autre boîte de dialogue, fonction de la précédente, s’ouvre ensuite : il s’agit de celle des Propriétés de la nomenclature, déjà abordée dans le paragraphe IV\[PartieA].

Remarque : Comme nous pouvons le constater, le menu déroulant de la fonction Nomenclatures offre d’autres types de nomenclatures particulières (relevé de matériaux, poteaux graphiques,…).

e) Organisation des vues dans l’arborescence du projet

Il est important d’avoir une arborescence claire et cohérente pour ceux qui utiliseront le modèle, et même pour notre propre confort quand nous travaillons.

Pour l’organiser nous utilisons l’outil Organisation de l’arborescence sur projet, qui se trouve dans le menu déroulant de l’icône Interface utilisateur, dans l’onglet Vue (ou par un clic droit sur Vues (tout) dans la fenêtre de l’arborescence).

Une première boîte de dialogue s’ouvre alors avec deux onglets. En effet, nous pouvons organiser les vues, mais aussi les feuilles pour les impressions. Poursuivons sur les vues : en cliquant sur l’onglet Nouvelle, et après avoir défini le nom de cette nouvelle organisation de vues, une deuxième boîte de dialogue s’ouvre. C’est dans celle-ci que nous définirons le nouvel agencement de l’arborescence : selon des filtres et des regroupements et tris.

Remarque : Rechercher dans l’arborescence.
Les projets peuvent vite devenir complexes, et surtout volumineux avec les nombreux éléments mis en place (vues, feuilles, familles, etc...). Nous disposons donc d’un outil de recherche qui permet, à partir du nom de l’élément, de le trouver rapidement dans l’arborescence : il suffit de faire un clic droit avec la souris sur un texte situé dans
l’arborescence du projet, et de choisir Rechercher. On entre alors le nom de l’élément recherché dans l’outil et celui-ci liste un à un les éléments (on fait défiler cette liste avec les onglets Précédente et Suivante).

f) **Vues réutilisables**

Pour gagner du temps, nous pouvons enregistrer des vues de nomenclatures, des formats de papier, etc... et les insérer dans nos différents projets selon les besoins.

1. **Exporter les vues et les feuilles**

Pour pouvoir réutiliser des vues il faut au préalable les avoir exportées.

Pour cela, dans le menu de l’application, on clique sur **Enregistrer sous** et on sélectionne **Vue** dans **Bibliothèque**. Une boîte de dialogue s’ouvre alors et nous demande de choisir les vues à enregistrer. Puis on entre le nom du fichier ainsi créé.

2. **Insérer les vues**

Nous utilisons pour cela l’outil **Insérer à partir du fichier**, disponible dans l’onglet **Insérer**, qui propose à travers son menu déroulant deux modes :

- **Insérer des vues à partir du fichier**, pour les vues : nous allons chercher le fichier contenant les vues souhaitées, puis nous les sélectionnons dans la boîte de dialogue recensant toutes les vus proposées par le fichier.

Copyright © 2017 Tous droits réservés – GRAITEC France
• **Insérer des éléments 2D à partir du fichier**, pour tout ce qui concerne les éléments d’annotation : la méthode est ensuite la même que pour les vues.

g) **Gabarits de vue**

Un gabarit de vue est un ensemble de propriétés de vues (échelle, niveau de détail, visibilité, plage de la vue, etc...). Nous le créons avec la fonction Gérer les gabarits de vues située dans le menu déroulant de l’icône Gabarits de vues, disponible dans l’onglet Vue.

La boîte de dialogue Gabarits de vue s’affiche alors, nous sélectionnons un des gabarits et nous le dupliquons avec l’outil **Dupliquer** tout en bas à gauche de la boîte de dialogue. Nous nommons le gabarit, et nous en définissons les propriétés dans le volet droit de la fenêtre en cochant, ou pas, les cases de la colonne **Inclure**.

![Boîte de dialogue Gabarits de vue](image)

Remarque : Le menu déroulant de l’icône Gabarits de vues nous propose aussi la fonction Créer un gabarit depuis la vue en cours. Dans ce cas, nous nous positionnons sur la vue à partir de laquelle nous souhaitons réaliser le gabarit de vue et nous lançons la fonction : la boîte de dialogue s’affiche et nous configurons notre nouveau gabarit de la même façon que ci-dessus.

![Boîte de dialogue Gabarits de vue](image)

h) **Les principales fonctions de la barre de contrôle de l’affichage**

Dans la barre de contrôle de l’affichage nous disposons de plusieurs fonctions :

- **Niveau de détail** : il peut être faible, moyen ou élevé ;
- **Style visuel** : il permet de gérer la qualité d’affichage des éléments de la vue :
 - **Image filaire** : affiche les éléments sans cacher ce qui devrait l’être ;
 - **Ligne cachée** : affiche les éléments en cachant ce qui devrait l’être ;
 - **Ombre** : colore les éléments en fonction du paramètre Ombrage des matériaux ;
 - **Couleurs uniformes** : affiche le paramètre Ombrage d’un matériau sans tenir compte de la lumière ambiante ;
 - **Réaliste** : affiche les textures des matériaux ;
 - **Lancer de rayons** : uniquement pour les vues 3D.
- **Trojectoire du soleil** active ou pas ;
- **Ombres** activées ou pas ;
- **Boîte de dialogue de rendu** (cf Partie C][III][b]) ;
- **Zone cadrée** : on peut cadrer chaque vue de façon à limiter la visualisation sur une partie de cette dernière :
 - **Cadrer la vue** : pour tracer le cadre ;
 - **Afficher la zone cadrée** : pour afficher le cadre.
- **Verrouiller la vue 3D** ou pas (cf Partie C][III][3]) ;
- **Masquer/Isoler** temporairement (cf Partie A][III][g]) ou de façon permanente.
• **Afficher les contraintes** : on affiche temporairement les contraintes de côtes et d’alignement dans une vue.

i) **Annotations et détails**

1. **Annotations textuelles**

 Pour créer un texte nous utilisons l’outil Texte, disponible dans l’onglet Annoter.

 Nous pouvons régler les paramètres de cette annotation grâce aux outils de l’onglet Modifier :

 ![Options de justification](image)

 Texte avec ou sans repère

 Justification de la ligne de repère

 Texte en gras, italique ou souligné

 Insertion de puces ou numéros

 Nous vérifions dans la fenêtre de propriétés que nous avons sélectionnée le type de texte souhaité (au besoin nous modifions le type). Puis nous insérons l’annotation sur la vue.

 Nous pouvons toujours modifier le texte ultérieurement en cliquant dessus, mais aussi lui ajouter ou lui supprimer des lignes de repère à l’aide des outils ci-contre :

 ![Clic sur les extrémités des différents éléments à coter](image)

 ![Clic sur la cotation pour terminer](image)

2. **Cotations**

 Le logiciel propose différents outils de cotation dans l’onglet Annoter selon l’élément à coter :

 - **Alignée ou Linéaire**, pour des distances : la barre d’options nous demande de fixer les références à prendre sur les murs (Axes du mur, Faces du mur, Axes du porteur, Faces du porteur) et nous propose deux méthodes pour réaliser la cotation :
 - Murs entiers : nous cliquons sur le mur et celui-ci est automatiquement côté en tenant compte des ouvertures, des quadrillages et murs en intersection ;
 - Références individuelles : nous cotonons manuellement les éléments en cliquant à leurs extrémités (pour terminer la cotation il faut cliquer sur celle-ci).

 ![Modifier | Ricez les cotations](image)

 ![Clic sur les extrémités des différents éléments à coter](image)

 ![Clic sur la cotation pour terminer](image)

 - **Angulaire**, pour les angles : on clique successivement sur les deux éléments qui forment l’angle ;
 - **De longueur d’arc**, pour les arcs de cercle : on sélectionne l’arc de cercle, puis chacune de ses extrémités.
 - **Radiale**, pour les rayons, et **De diamètre** : on sélectionne l’élément concerné ;
 - **D’inclinaison**, pour les pentes : on sélectionne l’élément concerné ;
 - **D’élévation**, pour les altitudes de points, et **De coordonnées**, pour les coordonnées de points : nous nous plaçons sur la vue adaptée (en plan pour les coordonnées, d’élévation ou en coupe pour les altitudes) et nous positionnons le curseur sur l’élément souhaité (du fait du repère, qu’on peut choisir de laisser ou pas dans la barre d’options, nous devons procéder en deux clics : un pour le coude, et un pour le symbole). Dans les propriétés du type de la cotation on peut modifier l’apparence de celle-ci (symbole, préfixe et suffixe des valeurs, etc...).
3. **Étiquettes d’éléments et de matériaux**

Pour étiqueter des éléments nous utilisons l’outil *Étiquette par catégorie*, disponible dans l’onglet *Annoter* : nous cliquons sur l’icône puis nous sélectionnons les éléments à renseigner.

Mais, avant de réaliser cette procédure, il faut charger les étiquettes. (Nous les trouvons dans le fichier *Annotations* de la bibliothèque standard).

Attention : si nous voulons placer des étiquettes sur une vue 3D il est indispensable de verrouiller celle-ci au préalable avec l’outil correspondant dans la barre de contrôle de l’affichage :

Nous pouvons également étiqueter des matériaux avec la fonction *Étiquette de matériel*.

Pour gagner du temps, nous disposons de l’outil *Tout étiqueter* dans l’onglet *Annoter*. Celui-ci ouvre une boîte de dialogue dans laquelle nous sélectionnons les catégories d’éléments à annoter ainsi que le type d’étiquette à attribuer.

4. **Outils de dessin 2D**

Lignes de modèle et ligne de détail :
Nous disposons de deux fonctions pour tracer des lignes dans Revit :

- **Les lignes de modèle** : pour les lignes 3D visibles dans toutes les vues.
- **Les lignes de détail** : pour les lignes 2D uniquement visibles dans la vue dans laquelle elles ont été tracées.

La fonction est disponible dans l'onglet *Architecture*.

Profil de coupe :
Cet outil permet de modifier la forme d’éléments coupés dans une vue (vue en plan, vue de faux-plafond ou coupe) sans modifier la géométrie 3D de l’élément ou son aspect dans les autres vues.

Nous le trouvons dans l’onglet *Vue*.

Ligne d’isolation :
L’outil *Isolation* nous permet de placer une nappe isolante dans des vues détaillées, des vues en plan, des vues en élévation ou des coupes.

Dans la barre d’options qui s’affiche quand on lance la fonction on précise l’épaisseur de l’isolant dans le champ *Largeur* et sa ligne de justification dans le champ *Décalage* (on coche également la case *Chainner* de façon à éviter de relancer la fonction).

Zone remplie :
Avec cet outil, nous pouvons créer un graphique spécifique à une vue en 2D avec un style de contour et un motif de remplissage dans les limites fermées.

Nous le trouvons dans le menu déroulant de l’icône *Région*, ou *Zone*, dans l’onglet *Annoter*.

Une fois la fonction lancée, nous dessinons le contour de la zone à l’aide des outils disponibles dans l’onglet *Modifier*, et nous choisissons le motif de remplissage dans le sélecteur de type.

Zone de masquage :
Ces zones permettent de cacher des zones dans une vue.
Nous trouvons l’outil dans le menu déroulant de l’icône *Région*, ou *Zone*, dans l’onglet *Annoter*.

Une fois la fonction lancée, nous dessinons le contour de la zone à l’aide des outils disponibles dans l’onglet *Modifier*.

Remarque : Si on veut remplacer le style actuel d’une ligne par un style différent nous pouvons utiliser l’outil *Trait* (lignes épaisses, lignes fines, pointillées, etc...).

II] PRESENTATION DES DOCUMENTS

a) **Les feuilles de mise en page**

1. **Création des feuilles de mise en page**

Pour créer une nouvelle feuille de mise en page nous faisons un clic droit sur *Feuilles (toujours)* dans la fenêtre de l’arborescence et nous sélectionnons *Nouvelle feuille*. Une boîte de dialogue s’ouvre alors, nous demandant quel est le type de format souhaité : soit nous sélectionnons l’un de ceux qui sont proposés, soit nous en chargeons un avec l’onglet *Charger* (nous le trouverons dans le fichier *Cartouches* dans la bibliothèque standard).
Nous pouvons ensuite attribuer un nom et un numéro à notre planche en faisant un clic droit sur la feuille dans l’arborescence, et en actionnant la fonction Renommer. En numérotant la feuille, non seulement nous l’identifions, mais en plus nous mettons en place une incrémentation sur toutes les feuilles à venir.

2. **Insérer des éléments sur les feuilles**

Pour placer des éléments sur les feuilles il y a deux impératifs à respecter :

- **Les vues 2D doivent être cadrées** : dans la fenêtre de propriétés des vues concernées on coche la case **Cadre la vue** et, afin de visualiser la cadre qu’on dimensionne, on coche également la case **Zone cadrée visible**. Une fois que nous avons correctement cadré la vue nous pouvons décocher cette dernière ;

- **Les vues 3D doivent être verrouillées** : nous utilisons la fonction de verrouillage dans la barre d’état, déjà vue précédemment quand nous traitions des étiquettes.

Nous pouvons maintenant insérer les éléments que nous souhaitons sur nos planches : nous nous plaçons sur la vue de la feuille, puis nous cliquons sur la vue à insérer dans l’arborescence tout en déplaçant la souris sur la feuille (nous faisons un « glisser-déposer »).

Concernant les nomenclatures, si le tableau est trop grand nous pouvons le briser à l’aide du symbole de la petite vague (nous pouvons réitérer l’opération autant de fois que nous voulons). De plus, nous pouvons déplacer les tableaux avec les symboles de déplacement présents sur chacun d’entre eux.

Lorsque nous insérons une vue 2D ou 3D dans une feuille, elle apparaît avec un titre et une barre en bas, ce qui peut nous gêner. Mais nous pouvons nous en défaire en allant dans **Modifier le type**, dans la fenêtre de propriétés : nous décochons la case **Affiche la ligne d’extension** et nous attribuons la valeur **Non** au champ **Affiche le titre**.

b) **Le cartouche**

Nous allons maintenant voir comment créer une feuille avec un cartouche dont nous disposons. Les étapes sont les suivantes :

- **Création de la feuille** : dans le menu de l’application nous cliquons sur **Nouveau** et nous sélectionnons **Cartouche**. Afin de pouvoir le dimensionner à loisir nous choisissons **Nouvelle taille (métrique)** ;
• **Dimensionnement de la feuille**: en cliquant sur le bord du cartouche dans la prolongation d’une des extrémités d’une cotation nous pouvons modifier celle-ci. Nous pouvons ainsi fixer la longueur et la largeur de notre feuille. Il est recommandé de décaler nos cotations de façon à ne pas les sélectionner par erreur par la suite en les confondant avec un des bords du cadre ;

![Image de dimensionnement de la feuille]

• **Création du cadre**: dans l’onglet Créer nous cliquons sur l’onglet Ligne et nous sélectionnons l’outil Rectangle que nous affectons d’un décalage de -5.00mm (ceci correspondra à l’épaisseur de notre cadre) ;

![Image de création du cadre]

• **Insertion du cartouche**: dans l’onglet Insérer nous cliquons sur l’icône Importer CAO et nous allons chercher celui que nous souhaitons. Nous ferons bien attention à mettre l’unité d’insertion en mm.

Afin de placer correctement le cartouche on utilise la fonction Aligner, déjà abordée dans les points précédents. Comme il s’agit d’un bloc le déplacement est facile, en revanche toute modification s’avère impossible dans cet état : nous devons donc le décomposer avec l’outil Décomposer disponible dans l’onglet Modifier quand on sélectionne l’objet (on choisit une Décomposition totale).
• **Indiquer que les cotes sont variables** : Nous sélectionnons une côte et, dans la barre d'options, nous cliquons sur *<Ajouter un paramètre...>* dans le champ *Libellé*. Nous allons ainsi attribuer un paramètre particulier à notre côte : dans la boîte de dialogue nous lui attribuons un nom, et nous cochons la case *Occurrence* (car ce paramètre est propre à cette côte dans ce cas particulier). Nous procédons ainsi pour les deux côtes.

![Image de la fonctionnalité de sélection de paramètre](image.png)

• **Enregistrer et charger dans le projet** : nous enregistrons le projet puis dans l’onglet *Modifier* nous cliquons sur l’icône *Charger dans le projet*.

![Image de la fonctionnalité de chargement dans le projet](image.png)

c) **Configuration de l’impression**

Pour imprimer nos documents nous allons dans le menu de l’application et nous cliquons sur *Imprimer*. Une première boîte de dialogue s’ouvre, et nous cliquons sur l’onglet *Configurer*, en bas à droite : une seconde boîte de dialogue s’affiche, dans laquelle nous veillerons aux points suivants :

• **Le Zoom** : on le règle à 100% afin de conserver l’échelle ;

• **Le Décalage** : on sélectionne *Aucune marge* dans ce champ. Ainsi, même si le périphérique a une marge d’usine elle ne sera pas prise en compte à l’impression : on utilise pleinement la page.

![Image de la fonctionnalité de configuration de l’impression](image.png)

Nous validons ces paramètres et, dans la première boîte de dialogue, nous configurons les vues à imprimer et en quelle quantité. Puis nous paramétrons l’imprimante : nous sélectionnons *PDF Creator* dans le champ *Nom* et nous cliquons sur l’onglet *Propriétés*. Dans l’onglet *Disposition*, nous cliquons sur *Avancé* afin de déterminer le format papier : nous choisissons *Dimension de papier personnalisé Post Script*.

![Image de la fonctionnalité de paramétrage de l’imprimante](image.png)
Il existe de nombreux formats d’export sous Revit, tous disponibles dans le menu déroulant de la fonction Exporter dans le menu de l’application :

- **Export au format DWG** : nous nous positionnons sur la vue en plan de l’étage souhaité et nous lançons la fonction DWG, issue du menu déroulant de la fonction Formats CAO.

 Dans la boîte de dialogue **Exportation au format DWG** qui s’affiche nous configurons l’export (paramètres, et vues à inclure que nous visualisons dans le volet gauche). Puis nous indiquons l’emplacement de notre nouveau fichier.

- **Export aux formats DXF, DGN et SAT** : ces trois formats sont proposés au sein de la fonction Formats CAO.

- **Export au format DWF** (qui permet de transmettre la vue dans un format de fichier léger et visualisable avec un logiciel gratuit (Design Review) ou dans Windows Vista/7/8 (respectivement DWF ou DWFx2D) : nous nous positionnons sur la vue en plan d’étage souhaitée et nous lançons la fonction DWG, issue du menu déroulant de la fonction Formats CAO.

 De même que précédemment nous configurons la boîte de dialogue qui s’affiche et nous indiquons l’emplacement du fichier créé.

 Remarque : Nous pouvons également exporter une vue 3D avec ce type de format : c’est le format DWF3D (dans ce cas nous nous plaçons sur une vue 3D avant de lancer la fonction).

- **Export dans un fichier image** : nous lançons la fonction Image, issue du menu déroulant de la fonction Images et animations

 Dans la boîte de dialogue **Exportation de l’image** nous définissons :

 - le nom du fichier et son emplacement ;
 - la ou les vue(s) à transformer en fichier image ;
 - la qualité des images et le format de sortie ;
• Export dans un rapport HTML : la méthode est la même que celle utilisée pour un export dans un fichier image, à ceci près que nous cochons la case Créer un site Web avec des liens de pages HTML pour chaque vue dans la boîte de dialogue Exportation de l’image.

• Export au format FBX (pour les logiciels 3ds Max ou 3ds Max Design) : nous nous positionnons sur une vue 3D et nous utilisons la fonction FBX. Il suffit alors de nommer le fichier d’export et de lui donner un emplacement.

• Export au format ADSK (Autodesk Exchange) : nous lançons la fonction Site du bâtiment, puis nous nommons le fichier créé et lui assignons un emplacement.

• Export au format PDF : pour réaliser un PDF 2D nous lançons la boîte de dialogue d’impression et nous choisissons PDF Creator comme imprimante (pour plus de précisions, voir le paragraphe VI[a]). Pour réaliser un PDF 3D nous devons télécharger le plug-in SOFiSTiK 3D-PDF Exports.

• Export au format IFC : nous nous plaçons dans la vue 3D et nous lançons la fonction IFC. Nous définissons ensuite dans la boîte de dialogue Exporter IFC le nom et le type de fichier désiré, et les options d’exportation.

III] RENDU

a) Apparence des matériaux

1. Les matériaux et leur attribution

Chaque composant, et chaque couche d’une structure composée, possède un certain type de matériau. Celui-ci est attribué dans la fenêtre de propriétés quand nous sélectionnons l’élément, dans les Propriétés du type (accessible avec l’onglet Modifier le type).
Par exemple, pour les murs et les sols nous devons cliquer sur l’onglet *Modifier* dans le champ *Structure* ; en revanche pour les portes et les fenêtres les champs de définition du matériau sont directement accessibles dans la rubrique *Matériaux et finitions des Propriétés du type* (nous cliquons sur le petit carré à droite).

Nous devons ensuite sélectionner le matériau dans le *Navigateur de matériaux*.

2. **Le Navigateur de matériaux**

Le *Navigateur de matériaux* regroupe tous les matériaux prédéfinis dans Autodesk Revit, mais nous pouvons également en créer comme nous le verrons par la suite.

Dans le volet haut gauche de la boîte de dialogue nous trouvons les matériaux du projet en cours, et dans le volet bas gauche la bibliothèque de matériaux fournis par Autodesk (non modifiables). Ainsi, si un matériau vient à manquer dans le projet, nous pouvons regarder s’il est disponible dans la bibliothèque Autodesk et l’ajouter avec les petites icônes disponibles dans le champ du matériau souhaité.
L’outil ci-contre permet de masquer la bibliothèque de matériaux Autodesk ou, au sein de celle-ci, l’arborescence de la bibliothèque.

Le volet droit de la fenêtre de dialogue dresse quant à lui les propriétés du matériau sélectionné dans le volet gauche, selon différents onglets :

- **Identité** : on y définit les informations générales du produit ;
- **Graphismes** : on y gère la représentation du motif de remplissage de la couche en plan et en élévation, ainsi que la couleur d’ombrage dans le cas d’un style visuel *Ombrés* ou *Couleurs uniformes* ;
- **Apparence** : on y affecte l’apparence de rendu du matériau dans le cas d’un style visuel *Réaliste* ou *Lancer de rayons*, et dans le rendu photo-réaliste ;
- **Physique** : on y définit les propriétés physiques du matériau (par exemple la masse volumique) ;
- **Thermique** : on y définit les propriétés thermiques du matériau (par exemple la densité) ;

Ce volet est escamotable grâce à l’icône de la double flèche en bas à droite du volet gauche.

3. **Créer un matériau dans le Navigateur de matériaux**

Pour créer un matériau, nous utilisons la fonction *Créer et dupliquer des matériaux*, disponible en bas à gauche du Navigateur de matériaux.

Le nouveau matériau apparaît alors dans la liste des matériaux du projet sous le nom *Valeur par défaut*. Nous paramétrons ensuite ce dernier avec les onglets décrits ci-dessus.

Les onglets **Physique** et **Thermique** n’apparaissent pas automatiquement à la création d’un matériau : il faut les ajouter à l’aide du symbole + à côté de l’onglet *Apparence*.
Après avoir choisi quel type de propriétés nous traitons (physiques ou thermiques), nous accédons à la boîte de dialogue du **Navigateur de ressources** : nous sélectionnons dans la liste la ressource concernée, et nous la chargeons dans le navigateur de matériaux à l’aide des petites icônes avec une flèche (à droite dans le champ de la ressource sélectionnée).

Nous pouvons également accéder au navigateur de ressources depuis le navigateur de matériaux grâce au bouton ci-contre.

Remarque : *Pouven*-

nous créer notre propre bibliothèque de matériaux ?

C’est en effet possible. Pour cela nous cliquons sur le bouton tout en bas à gauche de la boîte de dialogue du **Navigateur de matériaux** et nous lançons la fonction **Créer une bibliothèque** : nous nommons celle-ci et lui attribuons un emplacement. Puis, afin d’organiser cette nouvelle bibliothèque, nous créons des catégories par un clic droit. Il suffit ensuite de glisser les matériaux de la fenêtre des **Matériaux du projet** dans les catégories de notre bibliothèque.

b) **Rendu photo-réaliste**

Maintenant que l’apparence de nos matériaux est définie nous pouvons calculer en rendu les scènes 3D à l’aide de la fonction **Rendu**, disponible dans l’onglet **Vue**. Une boîte de dialogue s’ouvre alors, dans laquelle nous réglons :

- La qualité du rendu ;
- Le paramètre de sortie : l’écran ou l’imprimante, dont nous spécifions la résolution dans le menu déroulant à droite en PPP (points par pouce);
- L’éclairage : nous choisissons le type d’éclairage (naturel ou artificiel) et sa source;
- L’arrière-plan : nous spécifions le fond de l’image du rendu ;
- L’exposition et les paramètres d’export ;
- L’affichage du rendu ou du modèle : nous affichons soit l’image rendue, soit la vue 3D du modèle.
Puis nous lançons l’opération avec l’onglet *Rendu* (si nous souhaitons ne sélectionner qu’une zone de la vue nous cochons la case *Zone*). Une boîte de dialogue *Progression du rendu* s’affiche et nous permet de suivre la progression, voire d’annuler le rendu.
COMPLEMENTS SUR REVIT

I] Les plug-in d’EXCHANGE APPS

Revit dispose d’une fonction Exchange Apps (en haut à droite de l’interface) qui permet d’ouvrir la page web de la plate-forme de vente d’applications d’Autodesk. Celles-ci sont gratuites ou payantes, et on ne peut les télécharger que si on dispose d’un compte Autodesk. Une fois l’application téléchargée, soit un onglet particulier sera créé, soit elle sera accessible à partir de l’onglet (Compléments ou Analyser).

Parmi les applications intéressantes et gratuites qui sont proposées on peut citer :

- Structural Analysis Toolkit 2017 : suite d’outils permettant de faire les analyses structurelles d’un modèle ;
- Site Designer : outils destinés à l’aménagement de terrain (tracé des routes, talus,...) peu abordé dans Revit ;

II] Les développements GRAITEC

La société Graitec a développé deux applications pour le logiciel Autodesk Revit, à vocations différentes :

- Le Power Pack, qui propose un ensemble d’outils et de fonctionnalités permettant d’accroître la productivité :
 - Automatisation des cotations ;
 - Gestion des vues 3D ;
 - Récupération de paramètres géométriques (hauteur de mur, dimensions de dalle,...) ;
 - Gestion de la mise en page (alignement des vues sur une feuille) ;
 - Export vers le logiciel de calcul Advance Design ;
 - Meilleure gestion du ferraillage et accroissement de la productivité en termes de sortie de plans.
- ...

- Les BIM Designers Poutre-Poteau-Semelle, qui permet d’obtenir directement et simplement, sur Revit, le ferraillage et la note de calcul d’un de ces trois éléments.
TUTORIEL N°1 :
CREATION D’UNE FAMILLE 3D : POTEAU EN T

Il faut suivre les 6 étapes suivantes:
 Le choix du gabarit ;
 La création des plans de référence ;
 Le tracé de la géométrie ;
 La mise en place des contraintes ;
 La création des variables ;
 L’enregistrement et le chargement dans le projet.

Nous illustrerons les explications qui vont suivre avec l’exemple d’un poteau porteur en T (et en se basant sur ce qui a été dit dans le paragraphe b)IV)PartieB)).

I] Le choix du gabarit
Dans le menu de l’application, nous lançons la fonction Nouveau et sélectionnons Famille.
Dans la boîte de dialogue qui s’ouvre nous choisissons le gabarit souhaité : ici Poteau porteur métrique.

II] La création des plans de référence
Afin de ne pas être gênés par les paramètres existants dans le gabarit, nous supprimons tous les plans de référence excepté les deux axes centraux (qui correspondent au point d’insertion de la famille). De même, nous lançons la fonction Type de familles, accessible dans l’onglet Modifier, et nous supprimons les paramètres de cations existants.
Nous traçons ensuite les plans de référence avec l’outil Plans de référence dans l’onglet Créer : d’abord approximativement, ensuite plus précisément en entrant les valeurs numériques de nos côtes.

III] Le tracé de la géométrie

Pour cela nous allons lancer la fonction Extrusion dans l’onglet Créer, puis nous allons procéder en deux temps :

- Le tracé en plan : dans la vue en plan d’étage nous traçons, à l’aide des outils disponibles dans l’onglet Modifier, le profil de notre poteau selon les plans de référence mis en place. Nous validons.
- Le tracé en élévation : dans une des vues en élévation nous fixons la hauteur de notre poteau à l’aide des petites flèches bleues.

IV] La mise en place des contraintes

Nous verrouillons ensuite la géométrie tracée : nous déplaçons et replaçons chaque segment constituant le profil du poteau sur leur axe de référence respectif et nous cliquons sur le cadenas qui s’affiche (afin de le mettre en position fermée). Nous procédons ainsi dans la vue en plan d’étage, pour le profil, et dans une vue en élévation, pour la hauteur.
V] La création des variables

Les variables sont de deux types :

- **Equidistance** : nous créons des cotes d’équidistance entre des segments constituant notre famille. Pour cela, nous utilisons la fonction de la cotation *Alignée* (dans l’onglet *Annoter*) : nous cliquons sur les trois éléments concernés par l’équidistance (les segments extrêmes et celui du milieu) et nous cliquons sur la cotation même pour la terminer. Nous cliquons ensuite sur le symbole d’équidistance apparu.

- **Cotations avec libellé défini** : dans la vue en plan d’étage nous créons des cotes auxquelles nous affectons un paramètre. Pour cela nous lançons la fonction de cotation alignée, dans l’onglet *Annoter*, et dans le champ *Libellé* de la barre d’options nous sélectionnons *Ajouter un paramètre*. Nous définissons ensuite ce paramètre :
 - **Paramètre de famille ou paramètre partagé** : la question à se poser est en fait : est-ce que vous souhaitez créer un paramètre qui soit récupérable dans des étiquettes (Paramètres partagés) ou pas (Paramètres du projet).
 - **Paramètre de type ou d’occurrence** : nous nous demandons si le paramètre créé est propre à chaque élément (*Occurrence*) ou plutôt à un type d’élément (*Type*)
 - **Nom**
 - **Groupe**, dans lequel le paramètre apparaîtra dans les propriétés

VI] L’enregistrement et le chargement dans le projet

Nous enregistrions puis nous lançons la fonction *Charger dans le projet* dans la barre d’options.

Le logiciel nous proposera alors de placer directement le poteau créé dans le projet (d’où un message d’avertissement si la vue active ne permet pas le placement de l’élément). Nous pourrons faire appel à cette famille quand nous le voudrons par la suite, par le biais de la fonction *Poteau*.
TUTORIEL N°2 :
CREATION D’UNE FAMILLE 2D : ETIQUETTE DE DALLE

Nous allons devoir procéder en deux temps :
1. Créer un paramètre pour récupérer la notion d’épaisseur de dalle ;
2. Générer l’étiquette à proprement parler.
En effet, bien que les sols soient affectés d’une épaisseur dans leurs propriétés, nous ne pouvons pas récupérer directement la valeur lors de la création de l’étiquette.

I] Créer un paramètre pour récupérer la notion d’épaisseur de dalle

Il est tout à fait possible de créer des paramètres dans le projet, affectés à une catégorie en particulier. Mais, si nous voulons en récupérer la valeur dans une étiquette ou une nomenclature, il faut créer un paramètre partagé.
Les étapes suivies seront donc les suivantes :
- Création du paramètre partagé « Épaisseur »
- Création du paramètre « Épaisseur » dans le projet
- Renseignement du paramètre « Épaisseur » dans le projet

a) Création du paramètre partagé « Épaisseur »

Nous avons recours à la fonction Paramètres partagés dans l’onglet Gérer. La première étape, si ça n’a pas encore été fait, est de créer le fichier .txt de paramètres partagés. La méthode étant déclinée dans la partie B] IV] a) 2)nous ne nous attarderons pas dessus.
Une fois le fichier généré, nous pouvons créer le paramètre « Épaisseur », en cliquant sur Nouveau. Les seuls points à définir sont alors :
- Nom : Epaisseur ;
- Discipline : Commune (ce champ régit les différents types de paramètres disponibles dans le champ Type de paramètre en-dessous) ;
- Type de paramètre : Longueur (c’est en effet une valeur de longueur qui viendra renseigner le paramètre créé).
Il ne reste ensuite plus qu’à valider.

b) Création du paramètre « Épaisseur » dans le projet

Pour cela nous lançons la fonction Paramètres du projet à partir de l’onglet Gérer.
Nous cliquons ensuite sur Ajouter et nous définissons le paramètre, en se posant plusieurs questions :

- **Paramètre de projet ou paramètre partagé ?**

 Ici nous souhaitons récupérer le paramètre dans une étiquette donc nous cochons **Paramètres partagés** et nous allons chercher le paramètre « Epaisseur » créé juste avant par le biais de l’onglet Sélectionner. Les données du paramètre sont alors automatiquement renseignées.

- **Type ou occurrence ?**

 Autrement dit : est-ce que le paramètre créé est propre à chaque élément (Occurrence) ou plutôt à un type d’élément (Type)? Afin de ne renseigner le paramètre qu’une fois par type de sol, nous cochons **Type**.

- **Catégories ?**

 La boîte de dialogue nous demande ici quelles sont les catégories concernées par notre paramètre. Comme il s’agit des sols nous cochons **Sols**.

Nous cliquons ensuite sur ok pour valider la création du paramètre « Epaisseur ».

![Image montrant la création du paramètre](image)

c) Renseignement du paramètre « Epaisseur » dans le projet

Nous cliquons sur **Modifier le type** pour chaque type de dalle disponible dans le projet, et nous renseignons le champ « Epaisseur » ainsi créé (puisqu’il s’agit d’un paramètre de type).

![Image montrant le paramètre Epaisseur](image)

II] Générer l’étiquette

Les étapes à suivre pour générer l’étiquette sont au nombre de 6 :

- Le choix du gabarit ;
• L’attribution de la catégorie et des paramètres de famille ;
• La création du libellé ;
• La modification de l’apparence du libellé ;
• La modification de l’apparence de l’étiquette ;
• L’enregistrement et le chargement dans le projet.

a) Le choix du gabarit

Dans le menu de l’application, nous lançons la fonction Nouveau et sélectionnons Famille.
Dans la boîte de dialogue qui s’ouvre nous choisissons le gabarit souhaité : ici Annotations génériques métroisiques.

b) L’attribution de la catégorie et des paramètres de famille

Dans la fenêtre qui s’ouvre, nous remarquons un message en rouge que nous supprimons. En effet, il a juste une vocation de rappel sur deux principes importants à la création d’une famille : l’intersection des plans de référence correspond au point d’insertion de l’étiquette et il faut définir le type d’annotation que nous créons avant de la générer.
Pour cela, nous cliquons sur l’icône Catégorie et paramètres de famille dans la barre d’options de l’onglet Créer et, dans le volet Catégorie de famille, nous sélectionnons le type d’étiquettes souhaité et, dans le volet Paramètres de famille, les valeurs indiquant le comportement de l’étiquette. Ici, nous options pour une Étiquette de sols.

c) La création du libellé

Nous lançons la fonction Libellé, disponible dans l’onglet Créer, et nous cliquons à peu près au niveau de l’intersection des plans. Dans la boîte de dialogue qui s’ouvre nous sélectionnons les champs que nous souhaitons faire figurer sur l’étiquette : nous faisons passer les paramètres souhaités du volet de gauche (Paramètres de la catégorie) à celui de droite (Paramètres du libellé) et vice versa grâce aux icônes avec les flèches entre les deux (vert pour ajouter, rouge pour supprimer).
Nous pouvons également insérer un paramètre partagé grâce à l’icône *Paramètres* en bas à gauche
Pour l’exemple, dans l’étiquette de fenêtres nous faisons apparaître l’Élévation en bas et, avec le petit symbole de feuille en bas à gauche, nous ajoutons le paramètre partagé « *Épaisseur* » créé ci-dessus.

d) La modification de l’apparence du libellé

Dans la boîte de dialogue *Modifier le libellé* nous pouvons également gérer la disposition des éléments dans l’étiquette, en utilisant les outils suivants :

- **Préfixe et Suffixe**, dans le tableau : nous précisons les textes éventuels que nous souhaitons voir apparaître.
- **Couper**, dans le tableau : cocher cette case revient à demander au logiciel un retour à la ligne dans l’étiquette.
- **Les icônes avec flèche en bas à gauche du tableau** permettent de modifier l’ordre d’apparition des différents paramètres en les faisant monter ou descendre dans le tableau.
- **L’icône en forme de main en bas à gauche du tableau** permet de gérer les unités des paramètres : attention, quand nous créons une famille nous travaillons en millimètre. Il convient donc de préciser l’unité que nous souhaitons pour nos paramètres. Nous pouvons également y indiquer le nombre de décimales souhaitées.
- **Le dernier icône en bas à gauche du tableau** permet d’insérer des formules dans les étiquettes (nouveauté de Revit 2017).

Remarque : la colonne *Exemple de valeur* dans le tableau permet uniquement de visualiser notre étiquette afin de la dimensionner au mieux et de ne pas avoir de problèmes lorsqu’on la place dans notre projet.

Voici ce qui a été choisi pour le paramètre d’arase inférieure de notre étiquette dans le cadre de notre exemple :
e) La modification de l’apparence de l’étiquette

Nous pouvons maintenant gérer l’aspect de l’étiquette même. Pour cela nous cliquons dessus, et nous allons dans la boîte de dialogue **Modifier le type**. Nous pouvons alors demander la présence, ou pas d’un cadre, choisir la taille du texte, le mettre en gras, italique ou souligné…

Pour obtenir des mises en forme différentes pour les paramètres d’arase inférieure de la dalle et d’épaisseur de celle-ci il faudra créer un libellé pour chaque paramètre.
Nous pouvons également utiliser l’outil Ligne dans l’onglet Créer afin de générer le cercle et la doublure sur sa moitié afin de se rapprocher de la mise en forme usuelle des étiquettes de dalle.

\[
\begin{align*}
A_1 &= 999.99 \\
\text{Epaisseur} &
\end{align*}
\]

\[f)\text{ L’enregistrement et le chargement dans le projet}\]

Nous enregistrons puis nous lançons la fonction Charger dans le projet dans la barre d’options.

Le logiciel nous proposera alors de placer directement l’étiquette créée dans le projet (d’où un message d’avertissement si la vue active ne permet pas l’affichage de l’étiquette). Nous pourrons faire appel à cette famille quand nous le voudrons par la suite, par le biais de la fonction Étiquette par Catégorie.
Les étapes pour la mise en place des impacts vont être les suivantes :
- Création d’un paramètre « Impact »
- Renseignement du paramètre pour les éléments qui ont un impact
- Création de filtres d’impact dans la vue en plan concernée
- Mise en forme des filtres (motifs, épaisseur et couleur)

I] Création d’un paramètre « Impact »

Pour cela nous lançons la fonction Paramètres du projet à partir de l’onglet Gérer.
Nous cliquons ensuite sur Ajouter et nous définissons le paramètre, en se posant plusieurs questions :

- Paramètre de projet ou paramètre partagé ?
 Selon que nous souhaitons récupérer la valeur du paramètre dans les étiquettes et/ou nomenclatures, ou pas, nous cochons Paramètre partagé et allons chercher le dit paramètre dans le fichier texte s’il existe (nous le créons dans le cas contraire) ou nous cochons Paramètre de projet.
 Dans les deux cas nous définissons le nom (« Impact » par exemple), la Discipline (Commune), et le type de paramètre (Texte, puisque c’est avec un texte qu’on va renseigner le paramètre)

- Type ou occurrence ?
 Comme chaque élément peut avoir un impact différent nous préférons un paramètre d’occurrence.

- Catégories ?
 Les catégories d’éléments que nous souhaitons visualiser dans les impacts sont les murs, les poteaux porteurs, et les portes.
 Nous cliquons ensuite sur ok pour valider la création du paramètre « Impact ».

II] Renseignement du paramètre pour les éléments qui ont un impact

Nous avons créé le paramètre, à présent il faut en affecter la valeur pour chaque élément.
Pour cela, si nous réalisons le plan du PH RDC, nous pouvons nous placer dans une vue en plan d’étage associée au niveau R+1 afin de ne sélectionner que les éléments du R+1. Puis, grâce à un cadre de sélection et au filtre de sélection, nous ne conservons que les éléments du R+1 appartenant aux catégories murs, poteaux porteurs, et portes.

Il ne reste plus qu’à renseigner le champ « Impact » commun à tous ces éléments, par exemple avec « R+1 ».
III] Création de filtres d’impact dans la vue en plan concernée

Afin d’attribuer une représentation particulière aux éléments qui ont un impact nous devons utiliser des filtres, disponibles dans la boîte de dialogue de Remplacements Visibilité/Graphismes. Ces filtres seront définis à partir d’une règle de filtrage qui exploitera le paramètre « Impact », créé et renseigné précédemment, et ne seront propres qu’à la vue active (pour rappel, la boîte de dialogue de Remplacements Visibilité/Graphismes n’est valable que pour la vue active !).

Nous ouvrons donc tout d’abord la fenêtre de Remplacements Visibilité/Graphismes, soit en cliquant sur modifier dans le champ correspondant à partir de la fenêtre de propriétés de la vue, soit en tapant « VV » au clavier. Nous allons alors dans l’onglet Filtres et nous cliquons sur Ajouter puis sur Modifier/Nouveau.

Dans la boîte de dialogue qui s’affiche nous créons et définissons le premier filtre d’impact pour les murs et les poteaux :
- Création du filtre et son nom (« Impact Murs_poteaux R+1 » par exemple si nous réalisons le plan du PH RDC) grâce au symbole de petite feuille en bas à gauche ;
- Spécification des catégories concernées, ici les murs et les poteaux ;
- Mise en place de la règle de filtrage : nous allons exploiter le paramètre « Impact » que nous avons créé précédemment afin de ne conserver dans la sélection du filtre que les éléments tels que leur champ « Impact » ait sa valeur égale à « R+1 » (valeur qu’on a renseigné).
Nous validons ensuite ce premier filtre et nous en générons un deuxième sur le même principe mais pour les portes cette fois, ce qui nous permettra de gérer leur représentation à part. Il s’agira donc d’un filtre « Impact Portes R+1 », associé à la catégorie « Portes » et à la règle de filtrage « Impact _ égal à » _ « R+1 ».

Nous sélectionnons ensuite chaque filtre afin de les ajouter à l’onglet Filtres de la boîte de dialogue Remplacements Visibilité/Graphismes.

IV] Mise en forme des filtres

Les filtres sont désormais disponibles dans l’onglet Filtres de la boîte de dialogue Remplacements Visibilité/Graphismes.

Il faut à présent en paramétrer l’affichage :
- Impact Murs_poteaux R+1 : nous remplissons les colonnes Lignes et Motifs dans la rubrique Projection/Surface (car les éléments qui ont un impact sur un plan ne sont pas coupés mais bien vus en projection) ;
- Impact portes R+1 : nous décochons la case de la colonne Visibilité car nous ne souhaitons pas voir apparaître les lignes de représentation 2D des portes dues à la conception même de ces familles.

Nous pouvons désormais visualiser les impacts des éléments sur la vue dans laquelle nous avons configuré les filtres. Afin de bien obtenir un trou au niveau des portes dans notre plan, nous cochéons « Délimitation sans ligne » ou « Délimitation avec ligne » dans la champ « Délimitation de la profondeur » des propriétés de la vue.
En résumé, le filtre « Impact Murs_poteaux R+1 » permet d’avoir ce rendu :

Le filtre « Impact portes R+1 » permet d’éliminer les représentations 2D des portes (ici les pointillés noirs) :

Et la modification de la propriété « Délimitation de la profondeur » permet de bien obtenir un vide à l’emplacement de la porte :
La modélisation d’un élément porteur comprend toujours, par défaut, la génération de deux entités : physique et analytique.

Pour une meilleure lisibilité, le modèle analytique est souvent masqué dans les vues par le biais de la boîte de Remplacements de visibilité/graphismes. Il suffit de cocher la case Afficher les catégories de modèles analytiques dans cette vue dans l’onglet Catégories de modèles analytiques et, afin de travailler plus confortablement, il est recommandé de masquer le modèle physique en décochant la case similaire dans l’onglet Catégories de modèles.

I] Paramétrage du modèle analytique

Le modèle analytique peut être paramétré avec la fonction Paramètres de structure, accessible avec la petite flèche du panneau Structure dans l’onglet Structure, dont la boîte de dialogue est répartie suivant cinq onglets.

a) Paramètres du modèle analytique

La plupart des options de cet onglet permettent de vérifier la cohérence du modèle analytique, et de définir les valeurs des tolérances (utilisées pour les méthodes d’alignement par détection automatique).

b) Paramètres de condition d’appui / Paramètres de représentation symbolique

On choisit ici les paramètres de représentation graphique du modèle analytique (symboles des types d’appui, espacement des symboles pour les appuis linéaires et surfaciques). Ils sont à compléter avec les options de l’onglet Paramètres de représentation symbolique.
c) Cas de charges

On définit ici les différents cas de charges pour l’analyse structurelle du modèle. Pour cela, on crée tout d’abord les différentes natures de charge dans le volet bas de la fenêtre avec l’onglet **Ajouter**.

Puis, dans le volet haut de la fenêtre, on génère les différents cas de charge un à un avec l’onglet **Ajouter** (ou **Dupliquer**, si un premier cas de charge a déjà été renseigné). On nomme alors le cas de charge, on attribue sa nature grâce au menu déroulant (renseigné avec les valeurs entrées dans le tableau en-dessous) et on définit sa catégorie (le numéro est automatiquement incrémenté).

d) Les combinaisons de charge

Comme son nom l’indique, cet onglet va vous permettre de définir les combinaisons de charge. Mais il est plutôt recommandé de travailler sur un logiciel de calcul : Revit ne permet pas de générer automatiquement les combinaisons de charges, il faut donc définir toutes les combinaisons, ce qui est long et risqué du fait des potentielles erreurs de saisie.

Dans la cas où on souhaiterait intégrer les combinaisons de charge dans Revit la manipulation est assez simple. A l’aide de l’onglet **Ajouter** dans le volet haut de la fenêtre on génère la combinaison de charge : on la nomme, on déterminer son type et son état. La traduction de l’état peut prêter à confusion : **Maintenance** correspond à l’état limite de service, et **Dernier** à l’état limite ultime.

Quant à la formule on l’insère grâce au volet en bas à gauche : on sélectionne chaque cas de charge dans la colonne **Cas ou Combinaison** et on lui affecte un coefficient dans la colonne **Facteur**. La formule s’incrémente automatiquement dans le tableau au-dessus, en sommant les cas affectés de leur coefficient.
e) Les réglages analytiques

On peut effectuer certains réglages sur le modèle analytique afin de le simplifier ou de le corriger. Pour accéder à ces commandes, on sélectionne un élément du modèle analytique et on clique sur Réglage analytique dans le ruban.

Plusieurs fonctions nous sont alors proposées :

- **Mur Réglage** : elle est utilisée pour gérer les murs de façon simplifiée. Par exemple, supprimer un about de mur superflu. Une fois la commande activée, on clique d'abord sur l'extrémité du mur qu'on veut rabattre, puis sur celle qui correspondra à cette nouvelle extrémité.

- **Ouvertures** : cette fonction permet de prendre en compte, ou pas, les ouvertures dans le modèle analytique. Pour cela, on lance la fonction, et on décoche la petite case qui apparaît au niveau de l'ouverture pour supprimer celle-ci du modèle analytique.

- **Lien analytique** : grâce à cette fonction on peut créer des liaisons analytiques manuellement. Une fois qu'elle est lancée, il suffit de cliquer sur deux nœuds distincts pour générer le lien.
Dans ce mode de modification, on peut également modifier les éléments de façon manuelle grâce au symbole de repère qui apparaît lorsqu’on les sélectionne.

Lorsqu’on a terminé nos corrections on clique sur le symbole Terminer pour valider et quitter ce mode de modification.

Cette fonction de modification du modèle analytique n’affecte que ce dernier, laissant le modèle physique intact.

II] LES CONDITIONS D’APPUIS ET LES CHARGEMENTS

a)] Les conditions d’appui

On les définit à l’aide de la commande du même nom dans l’onglet Analyser, qui propose trois types d’appui : Point, Ligne, Surface.

On peut ensuite choisir les conditions d’appui, dans la barre d’option ou la fenêtre de propriétés, définies selon quatre état : Encastré, Articulé, Appui simple et Utilisateur. En optant pour l’état Utilisateur on peut définir les champs Conversion et Rotation selon les axes X, Y et Z (Fixe, Relâcher ou Ressort).

Enfin on peut placer les conditions d’appui en sélectionnant l’élément.

b)] Les chargements

On retrouve également dans l’onglet Analyser la commande Charges qui permet d’appliquer des efforts aux éléments analytiques du modèle. Différents types de charges sont proposées, qu’on pourrait rassembler en deux groupes : les charges libres et les charges hébergées. Et au sein d’entre elles on retrouve des charges concentrée, linéique et surfacique.
Les charges hébergées sont plus rapides à placer : lorsqu’on survole un élément avec la souris, Revit présélectionne l’ensemble et y dispose la charge. Les charges libres, elles, sont manuelles. Elles présentent donc plus un intérêt pour les éléments particuliers (comme une jardinière supportée par un sol par exemple).

Qu’elles soient libre ou hébergées, les propriétés des charges sont les mêmes :

- **Les propriétés de type** ont une vocation purement graphique
- **Les propriétés d’occurrence** définissent les charges, et notamment :
 - Le champ Réaction, s’il est coché, indique que l’effort est interne à l’élément ;
 - Le paramètre Cas de charge, à travers une liste déroulante, propose l’ensemble des cas définis précédemment dans la boîte de dialogue des paramètres de structure ;
 - Le sens d’orientation, défini selon le repère du projet ou celui de l’hôte (pour les charges hébergées) ;
 - Les valeurs de l’effort (Fx, Fy, Fz pour les forces, Mx, My, Mz pour les moments).

Pour les charges linéiques on note la présence de deux paramètres d’occurrence supplémentaires :

- *Charge uniforme* : en décochant cette case on peut définir des charges linéiques triangulaires ou trapézoïdales
- *Charge projetée* : qui permet de projeter la valeur de la charge sur la ligne inclinée.

c) **Les vérifications**

Comme on a pu le voir dans la fenêtre Paramètres de structure (dans l’onglet *Paramètres du modèle analytique*) on peut vérifier automatiquement les conditions d’appui et la cohérence entre les modèles analytique et physique.

On peut soit lancer ces vérifications à partir de cette fenêtre, soit retrouver ces fonctions dans l’onglet *Analyser (Conditions d’appui et Cohérence)*.

Revit ouvre alors une boîte de dialogue précisant le nombre d’avertissements liés à la vérification, et on y accède avec l’icône en dessous des flèches.

Remarque : si on lance une seconde vérification des conditions d’appui aucun message n’est affiché. À la différence de la vérification de la cohérence qui nous avertira que la vérification est terminée.

En conclusion, Revit permet d’aller assez loin dans le paramétrage du modèle analytique. Néanmoins, il est préférable de ne gérer que la géométrie du modèle analytique et d’exporter dans un logiciel de calcul pour s’intéresser aux cas de charge et conditions d’appui. Et ce, pour plusieurs raisons : d’une part il faut entrer toutes les données de combinaison de charge à la main, ce qui est risqué et répétitif, d’autre part il faut bien différencier le travail du projeteur structure de celui de l’ingénieur structure.